Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 779, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39128988

RESUMO

Catalpa bungei, a tree indigenous to China, is renowned for its superior timber quality and as an ornamental in horticulture. To promote the cultivation of C. bungei in cold regions and expand its distribution, enhancing its cold tolerance is essential. The CCCH gene family is widely involved in plant growth, development, and expression under stress conditions, including low-temperature stress. However, a comprehensive identification and analysis of these genes have not yet been conducted. This study aims to identify key cold-tolerance-related genes within the CCCH gene family of C. bungei, providing the necessary theoretical support for its expansion in cold regions. In this study, 61 CCCH genes within C. bungei were identified and characterized. Phylogenetic assessment divided these genes into 9 subfamilies, with 55 members mapped across 16 chromosomes. The analysis of gene structures and protein motifs indicated that members within the same subfamily shared similar exon/intron distribution and motif patterns, supporting the phylogenetic classification. Collinearity analysis suggested that segmental duplications have played a significant role in the expansion of the C. bungei CCCH gene family. Notably, RNA sequencing analysis under 4 °C cold stress conditions identified CbuC3H24 and CbuC3H58 as exhibiting the most significant responses, highlighting their importance within the CCCH zinc finger family in response to cold stress. The findings of this study lay a theoretical foundation for further exploring the mechanisms of cold tolerance in C. bungei, providing crucial insights for its cultivation in cold regions.


Assuntos
Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Resposta ao Choque Frio/genética , Proteínas de Plantas/genética , Temperatura Baixa , Perfilação da Expressão Gênica , Genes de Plantas
2.
Sci Total Environ ; 904: 166932, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690759

RESUMO

Shifts in rhizosphere soil microorganisms of dominant plants' response to climate change profoundly impact mountain soil ecosystem multifunctionality; relatively little is known about the relationship between them and how they depend on long-term environmental drivers. Here, we conducted analyses of rhizosphere microbial altitudinal pattern, community assembly, and co-occurrence network of 6 dominant plants in six typical vegetation zones ranging from 1350 to 2900 m (a.s.l.) in Helan Mountains by absolute quantitative sequencing technology, and finally related the microbiomes to root zone soil multifunctionality ('soil multifunctionality' hereafter), the environmental dependence of the relationship was explored. It was found that the altitudinal pattern of rhizosphere soil bacterial and fungal diversities differed significantly. Higher co-occurrence and more potential interactions of Stipa breviflora and Carex coninux were found at the lowest and highest altitudes. Bacterial α diversity, the identity of some dominant bacterial and fungal taxa, had significant positive or negative effects on soil multifunctionality. The effect sizes of positive effects of microbial diversity on soil multifunctionality were greater than those of negative effects. These results indicated that the balance of positive and negative effects of microbes determines the impact of microbial diversity on soil multifunctionality. As the number of microbes at the phylum level increases, there will be a net gain in soil multifunctionality. Our study reveals that geographical and climatic factors can directly or modulate the effects of soil properties on rhizosphere microbial diversity, thereby affecting the driving effect of microbial diversity on soil multifunctionality, and points to the rhizosphere bacterial diversity rather than the fungi being strongly associated with soil multifunctionality. This work has important ecological implications for predicting how multiple environment-plant-soil-microorganisms interactions in mountain ecosystems will respond to future climate change.


Assuntos
Ecossistema , Microbiota , Rizosfera , Solo , Microbiologia do Solo , Plantas , Bactérias , Fungos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA