Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(25): 22692-22702, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31199111

RESUMO

Poly(tetrafluoroethylene) (Teflon) has been selected as the self-template structural material in the preparation of VO2 films using a reactive magnetron sputtering method and post-annealing process. VO2 films with spontaneous random nanoporous structures growing on quartz glasses have been deliberately established via bottom-up processing through this novel and facile approach. The nanoporous VO2 films exhibit an excellent optical performance based on the localized surface plasmon resonance, with ultrahigh luminous transmittance ( Tlum-L) up to 78.0% and the promoted solar modulation ability (Δ Tsol) of 14.1%. Meanwhile, the ingenious microstructure of the film provides an antireflection function from multiple perspectives on visible light and indicates the potential of the windshield on vehicles for smart solar modulation. The nanoporous films expand the practical application of thermochromic VO2 to a fire-new field, breaking the optical performance envelope of the single-layer dense VO2 film away, and offering a universal method to prepare homogeneous nanoporous structures for thin films.

2.
Chemistry ; 23(53): 13221-13232, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28771852

RESUMO

Nanorods of δ-Ca0.24 V2 O5 ⋅H2 O, a straczekite group mineral with an open double-layered structure, have been successfully fabricated by a facile hydrothermal method and can be transformed into the tunnel ß geometry (ß-Ca0.24 V2 O5 ) through a vacuum annealing treatment. The generated ß-Ca0.24 V2 O5 still preserves the nanorod construction of δ-Ca0.24 V2 O5 ⋅H2 O without substantial sintering and degradation of the nanostructure. As cathode materials, both calcium vanadium bronzes exhibit high reversible capacity, good rate capability, as well as superior cyclability. Compared with the hydrated vanadium bronze, the ß-Ca0.24 V2 O5 nanorods show better cycling performance (81.68 and 97.93 % capacity retention after 200 cycles at 100 and 400 mA g-1 , respectively) and excellent long-term cyclic stability with an average decay of 0.035 % per cycle over 500 cycles at 500 mA g-1 . Note that the double-layered δ-Ca0.24 V2 O5 ⋅H2 O electrode irreversibly converts into ß-Cax V2 O5 phase during the initial Li+ insertion/extraction process, while in contrast, the ß-phase calcium vanadium bronze electrode shows excellent structural stability during cycling. The excellent electrochemical performance demonstrates that the two calcium vanadium bronzes are potential cathode candidates for rechargeable lithium-ion batteries.

3.
Chem Asian J ; 12(14): 1709-1714, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28636086

RESUMO

In this Communication, we report MoO3-x nanocomposites in which the near-infrared and visible light transmittance can be selectively modulated through the crystallinity. The MoO3-x nanocomposites were fabricated by a hydrothermal method, and their optical properties were characterized by UV-Vis spectrometer. The obtained results proved the possibility to tune the nanocomposite's optical properties in the UV/Visible spectral region: crystalline MoO3 mainly regulates the near-infrared range (800-2600 nm), and amorphous MoO3-x mainly changes the visible range from 350 nm to 800 nm and MoO3-x , with semi-crystalline structures mainly modulating around 800-1000 nm. These kinds of optical modulations could be attributed to small polar absorption, free electron absorption and plasmon absorption according to different crystallinity. Our work may create new possibilities for future applications such as photochromism, photocatalysis, and electrochromism.

4.
Nanoscale ; 9(24): 8298-8304, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28585945

RESUMO

Plasmonic materials have drawn emerging interest with their high charge carrier density and solar harvesting ability, resulting in tunable enhanced absorption and scattering resonances. Herein, a novel plasmonic MoO3-x hybrid comprising orthorhombic MoO3-x nanorod and hexagonal MoO3 nanograin was obtained using a simple hydrothermal method. An excellent photochromic property with up to 40% solar modulation efficiency at 600-1000 nm was achieved, which was mainly attributed to the localized surface plasmon resonance (LSPR) absorption at around 900 nm and the polaron absorption at 650 nm with a synergistic effect. In comparison to the limited near-infrared absorption of conventional crystalline MoO3, a distinct modulation range in the critical range between visible and near-infrared was rationalized by a size effect deduced from Mie scattering theory. Our research provided a novel plasmonic molybdenum oxide hybrid to realize an optical modulation function with a tunable wavelength range for energy saving.

5.
Nanotechnology ; 28(20): 20LT02, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28296646

RESUMO

Ultrathin Ni doped CoOx films were prepared by direct current co-sputtering at room temperature as inorganic hole transport materials for inverted perovskite solar cells. P-type doping was designed to adjust the valence band position of CoOx to match the that of CH3NH3PbI3, which would effectively eliminate the interface barrier. Moreover, the hole extraction ability would be enhanced and the power conversion efficiency of the devices hence increased from 3.68% to 9.60%. The optimized performance was also accompanied by decent stability as a result of its intrinsic stability.

6.
Artigo em Inglês | MEDLINE | ID: mdl-28335450

RESUMO

The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238U, 226Ra, 232Th, 40K, and 137Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 µSv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10-4/Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China's mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level.


Assuntos
Metais Pesados/análise , Mineração , Poluentes do Solo/análise , Solo/química , China , Estudos Prospectivos , Radioatividade , Espectrometria gama , Urânio/análise
7.
Langmuir ; 33(15): 3624-3634, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28335596

RESUMO

With the aim of fabricating simple, reproducible, and scalable perovskite solar cells (PSCs) with least time consumption, a novel CoOx hole transport layer (HTL) was first proposed and introduced in this work. The CoOx HTL thickness was minimized to about 10 nm with complete coverage on the FTO substrate (F-doped SnO2) by direct current magnetron sputtering. The ultrathin HTL could minimize the incident light loss caused by cobalt ion absorption and reduce the carrier transport loss by shortening the transport path. Copper was incorporated into the CoOx lattice to address the low conductivity of the CoOx film and the energy-level mismatch between CoOx and the perovskite material. On the basis of cobalt-copper binary oxide (Co1-yCuyOx), the highest power conversion efficiency (PCE) of about 10% was achieved, which was acceptable for mass production. Moreover, the deposition of such Co1-yCuyOx films takes only 2 min without size limitation of substrates. A well-functioned device based on the Co1-yCuyOx HTL could hence be fabricated within 100 min. Excellent stability was demonstrated as well, with over 90% of the initial PCE remaining after being stored in a dark and humid environment (relative humidity 60%) for 12 days.

8.
ACS Appl Mater Interfaces ; 9(3): 2016-2022, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28072509

RESUMO

The short circuit current density of perovskite solar cell (PSC) was boosted by modulating the dominated plane facets of TiO2 electron transport layer (ETL). Under optimized condition, TiO2 with dominant {001} facets showed (i) low incident light loss, (ii) highly smooth surface and excellent wettability for precursor solution, (iii) efficient electron extraction, and (iv) high conductivity in perovskite photovoltaic application. A current density of 24.19 mA cm-2 was achieved as a value near the maximum limit. The power conversion efficiency was improved to 17.25%, which was the record value of PSCs with DC magnetron sputtered carrier transport layer. What is more, the room-temperature process had a great significance for the cost reduction and flexible application of PSCs.

9.
Nanotechnology ; 28(5): 055403, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28029104

RESUMO

An anodized TiO2 interconnected network was fabricated and utilized as a mesoporous scaffold and electron transporter in perovskite solar cells. By modifying the synthesis parameters, the morphological features of the interconnected TiO2 nanostructures can be widely tuned and precisely controlled. The functional properties of the anodized TiO2 network are found to be severely influenced by morphology as well as the extent of oxidation. The device with the optimized TiO2 network exhibits superior electron extraction and transferability, resulting in conspicuous enhancement of the photocurrent and power conversion efficiency (PCE). This work proposes a promising and facile method for improving the performance of perovskite solar cells.

10.
ACS Appl Mater Interfaces ; 8(43): 29742-29748, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27739664

RESUMO

Vanadium dioxide (VO2), as a typical thermochromic material used in smart windows, is always limited by its weaker solar regulation efficiency (ΔTsol) and lower luminous transmittance (Tlum). Except for common approaches such as doping, coating, and special structure, compositing is another effective method. The macroscopic thermochromic (from colorless to blue) ionic liquid-nickel-chlorine (IL-Ni-Cl) complexes are selected in this paper to be combined with VO2 nanoparticles forming a composite film. This novel scheme demonstrates outstanding optical properties: ΔTsol = 26.45% and Tlum,l = 66.44%, Tlum,h = 43.93%. Besides, the addition of the IL-Ni-Cl complexes endows the film with an obvious color change from light brown to dark green as temperature rises. This splendid visible thermochromic performance makes the composite film superior in function exhibiting and application of smart windows.

11.
Ecotoxicol Environ Saf ; 130: 185-92, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27107776

RESUMO

Natural and artificial radionuclides and heavy metals in the surface soil of the uranium mining area of Tongliao, China, were measured using gamma spectrometry, flame atomic absorption spectrophotometry, graphite furnace atomic absorption spectrophotometry and microwave dissolution atomic fluorescence spectrometry respectively. The estimated average activity concentrations of (238)U, (232)Th, (226)Ra, (40)K and (137)Cs are 27.53±16.01, 15.89±5.20, 12.64±4.27, 746.84±38.24 and 4.23±4.76Bq/kg respectively. The estimated average absorbed dose rate in the air and annual effective dose rate are 46.58±5.26nGy/h and 57.13±6.45µSv, respectively. The radium equivalent activity, external and internal hazard indices were also calculated and their mean values are within the acceptable limits. The heavy metal concentrations of Pb, Cd, Cu, Zn, Hg and As from the surface soil were measured and their health risks were then determined. Although the content of Cd is much higher than the average background in China, its non-cancer and cancer risk indices are all within the acceptable ranges. These calculated hazard indices to estimate the potential radiological health risk in soil and the dose rate are well below their permissible limit. In addition the correlations between the radioactivity concentrations of the radionuclides and the heavy metals in soil were determined by the Pearson linear coefficient.


Assuntos
Exposição Ambiental/análise , Mineração , Doses de Radiação , Radioisótopos/análise , Solo/química , Urânio/análise , Poluentes Radioativos do Ar/análise , Arsênio/análise , Cádmio/análise , Radioisótopos de Césio/análise , China , Cobre/análise , Humanos , Chumbo/análise , Mercúrio/análise , Potássio/análise , Radioatividade , Rádio (Elemento)/análise , Medição de Risco , Poluentes Radioativos do Solo/análise , Espectrometria gama , Espectrofotometria Atômica , Tório/análise , Zinco/análise
12.
ACS Appl Mater Interfaces ; 6(24): 22243-9, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25437752

RESUMO

Cu-doped anatase TiO2 films grown by magnetron sputtering at room temperature showed the unexpected observation of room-temperature ferromagnetism, which was enhanced or destroyed corresponding to low or high impurity concentration via vacuum annealing. On the basis of the analysis of composition and structure, the most important factor for activating ferromagnetism can be identified as the creation of grain boundary defects. In addition, oxygen defects can be the dominating factor for increasing the saturation moment of the 0.19 at. % Cu-doped TiO2 film from 0.564 to 26.41 emu/cm(3). These results help elucidate the origin of ferromagnetism and emphasize the role of oxygen defects for the application of ferromagnetic films.

13.
ACS Appl Mater Interfaces ; 6(8): 5940-6, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24720367

RESUMO

A TiO2 film with dominant anatase {001} facets is directly prepared by direct-current reactive magnetron sputtering at room temperature without using morphology-controlling agents. The formation mechanism of anatase TiO2 films with dominant {001} facets is explained by the competition between thermodynamics and ion impinging in the deposition process. The crystalline TiO2 film shows a superior photocatalytic efficiency for the degradation of Rhodamine B under UV-visible (λ > 250 nm) lights. Furthermore, a comparable photodegradation of Rhodamine B is also found on the TiO2 film surface by using visible (λ > 420 nm) lights. During film growth, the surface bombarded by high energy of ions yields plenty of oxygen defects, which can enhance the photocatalytic activity of the films irradiated under visible light.

14.
ACS Appl Mater Interfaces ; 6(3): 1351-5, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24387162

RESUMO

Flat anatase TiO2 thin film deposited at room temperature shows the natural hydrophobicity, which is destroyed by 400 °C vacuum annealing. On the basis of the analysis of surface composition and structure, the origin of hydrophobicity of the flat TiO2 film can be identified as (1) approximately fully stoichiometric TiO2 and (2) hydrocarbon adsorbates on the film surface. We further validate that interfacial water molecules near the surface of the as-prepared TiO2 film are oriented in the hydrophobic hydration structure via Fourier transform infrared/attenuated total reflection. Moreover, the as-prepared TiO2 film also shows a smart surface reversibly switched between hydrophobicity and super-hydrophilicity. During the recovery process of hydrophobicity, the irradiated films show the wettability with water contact angle of 107 ± 1.7, 72 ± 2.5, 80 ± 1.1, and 17 ± 1.3° corresponding to after a week of exposure to ambient air, O2, CF4, and Ar, respectively. It can be strongly reinforced that the stoichiometry and the adsorbates both play an important role in forming the hydrophobic TiO2 films.

15.
Anal Sci ; 21(3): 281-6, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15790113

RESUMO

The interaction between metal ions and bovine serum albumin (BSA) was studied by using a piezoelectric quartz crystal (PQC) arranged in the electrode-separated configuration. A silanized surface of the PQC was coated with a BSA membrane via a coupling reaction with glutaraldehyde. The frequency shifts obtained from PQC coated with a BSA membrane suggested that various kinds of metal ions could be adsorbed onto the BSA membrane from aqueous solutions containing a low concentration of metal ions (2 or 10 micromol dm(-3)), only when the BSA was denatured with an alkaline solution. Anionic species of Pt(IV) and Au(III) were adsorbed onto the denatured BSA membrane from an acetic acid solution at pH 2.2, and cationic species of Cd(II), Zn(II), Co(II), Ni(II), Cu(II), and Ag(I), and cations, such as Ca2+, Ba2+, and Mg2+, were adsorbed from ammonia buffer at pH 9.5, whereas Al(III), Cr(III), Fe(III), Hg(II), and Pb(II) were hardly adsorbed. The adsorption mechanisms of these metal ions are discussed, based on the electrostatic interaction between the metal ions and the denatured BSA membrane, and complex formation between the metal ions and amino acid residues of the denatured BSA. Further, the PQC coated with a denatured BSA membrane was applied to the determination of Pt and Cd, using large frequency shifts for Pt(IV) and Cd(II).


Assuntos
Membranas Artificiais , Metais/química , Quartzo , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Eletrodos , Íons , Propriedades de Superfície
16.
Anal Sci ; 18(8): 881-5, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12200833

RESUMO

Silver(I) adsorbed selectively onto a quartz plate modified with N-(2-pyridylmethyl)chitosan in an ammonium chloride buffer solution containing EDTA, and the frequency of the quartz plate increased. It was supposed that the increasing frequency was caused by the desorption of adsorbed water on the chitosan derivative, which was induced from the reaction of silver(I) with the chitosan derivative. The concentration of the buffer, pH, temperature, conductivity and eluent affected the frequency shift resulting from the adsorption of silver(I). The frequency decreased at a conductivity lower than 2.2 mS/cm, and increased with increasing conductivity above this value. The frequency shifts caused by the adsorption of silver(I) were proportional to the concentration over the range 10-80 nM of silver(I), and the correlation coefficient was 0.9969. The detection limit and the relative standard deviation at 50 nM for five times were 6 nM and 3.4%, respectively. The proposed method was simple while showing higher sensitivity and selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA