Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 421, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37957640

RESUMO

BACKGROUND: Myocardial ischemia-reperfusion (I/R) injury is accompanied by an imbalance in the cardiac autonomic nervous system, characterized by over-activated sympathetic tone and reduced vagal nerve activity. In our preceding study, we pioneered the development of the magnetic vagus nerve stimulation (mVNS) system. This system showcased precise vagus nerve stimulation, demonstrating remarkable effectiveness and safety in treating myocardial infarction. However, it remains uncertain whether mVNS can mitigate myocardial I/R injury and its specific underlying mechanisms. In this study, we utilized a rat model of myocardial I/R injury to delve into the therapeutic potential of mVNS against this type of injury. RESULTS: Our findings revealed that mVNS treatment led to a reduction in myocardial infarct size, a decrease in ventricular fibrillation (VF) incidence and a curbing of inflammatory cytokine release. Mechanistically, mVNS demonstrated beneficial effects on myocardial I/R injury by inhibiting NLRP3-mediated pyroptosis through the M2AChR/OGDHL/ROS axis. CONCLUSIONS: Collectively, these outcomes highlight the promising potential of mVNS as a treatment strategy for myocardial I/R injury.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Estimulação do Nervo Vago , Animais , Ratos , Fenômenos Magnéticos , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/etiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Espécies Reativas de Oxigênio
2.
Nanoscale ; 15(7): 3532-3541, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723151

RESUMO

The imbalance between the sympathetic and the parasympathetic nervous system is one of the main pathogeneses of myocardial infarction (MI). Vagus nerve stimulation (VNS), which restores autonomic nervous balance by enhancing the parasympathetic drive, is shown to have benefits for patients with MI. As a clinically safe and effective remote neuromodulation method, magnetic stimulation is expected to overcome the problems of infection and nerve injury caused by electrode implantation. However, it is difficult to achieve precise stimulation on a single vagus nerve due to the poor focus of the magnetic field. Here, we described a novel magnetic vagus nerve stimulation (mVNS) system, which consisted of an injectable chitosan/ß-glycerophosphate (CS/GP) hydrogel loaded with superparamagnetic iron oxide (SPIO) nanoparticles and a mild magnetic pulse sequence. The injectable hydrogel prepared from clinically safe materials ensured minimally invasive implantation, and the SPIO nanoparticles in the hydrogel mediated the precise magnetic stimulation of a single vagus nerve. Under a mild magnetic field (∼100 mT), a decrease in heart rate and a change in vagus nerve potential were found in rats under in situ injection of a magnetic CS/GP hydrogel. Magnetic stimulation on the vagus nerve for 4 weeks (20 Hz, three times daily, 5 minutes each time) significantly improved the cardiac function and reduced the infarct size of the rats subjected to myocardial infarction, accompanied by suppression of inflammatory cell infiltration and inflammation factor expression. Taken together, these results demonstrated that the mVNS exhibited promising potential for treating myocardial infarction in the clinic.


Assuntos
Hidrogéis , Infarto do Miocárdio , Ratos , Animais , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , Nervo Vago/metabolismo , Fenômenos Magnéticos
3.
Cells ; 11(13)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805091

RESUMO

Leukemia is a non-solid cancer which features the malignant proliferation of leukocytes. Excessive leukocytes of lesions in peripheral blood will infiltrate organs, resulting in intumescence and weakening treatment efficiency. In this study, we proposed a novel approach for targeted clearance of the leukocytes in the peripheral blood ex vivo, which employed magnetic nanochains to selectively destroy the leukocytes of the lesions. The nanochains were doxorubicin-loaded nanochains of Fe3O4 nanoparticles which were fabricated by the solvent exchange method combined with magnetic field-directed self-assembly. Firstly, the nanochains were added into the peripheral blood during extracorporeal circulation and subjected to a rotational magnetic field for actuation. The leukocytes of the lesion were then conjugated by the nanochains via folic acid (FA) targeting. Finally, the rotational magnetic field actuated the nanochains to release the drugs and effectively damage the cytomembrane of the leukocytes. This strategy was conceptually shown in vitro (K562 cell line) and the method's safety was evaluated in a rat model. The preliminary results demonstrate that the nanochains are biocompatible and suitable as drug carriers, showing direct lethal action to the leukemic cells combined with a rotational magnetic field. More importantly to note is that the nanochains can be effectively kept from entry into the body. We believe this extracorporeal circulation-based strategy by activating nanochains magnetically could serve as a potential method for leukemia treatment in the future.


Assuntos
Leucemia , Nanopartículas , Animais , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos , Circulação Extracorpórea , Leucemia/tratamento farmacológico , Ratos
4.
R Soc Open Sci ; 4(8): 170484, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28878995

RESUMO

A generalized solution procedure is developed for in-plane free vibration of rectangular and annular sectorial plates with general boundary conditions. For the annular sectorial plate, the introduction of a logarithmic radial variable simplifies the basic theory and the expression of the total energy. The coordinates, geometric parameters and potential energy for the two different shapes are organized in a unified framework such that a generalized solving procedure becomes feasible. By using the improved Fourier-Ritz approach, the admissible functions are formulated in trigonometric form, which allows the explicit assembly of global mass and stiffness matrices for both rectangular and annular sectorial plates, thereby making the method computationally effective, especially when analysing annular sectorial plates. Moreover, the improved Fourier expansion eliminates the potential discontinuity of the original normal and tangential displacement functions and their derivatives in the entire domain, and accelerates the convergence. The generalized Fourier-Ritz approach for both shapes has the characteristics of generality, accuracy and efficiency. These features are demonstrated via a few numerical examples.

5.
J Appl Mech ; 84(4): 0410021-410026, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28289315

RESUMO

Mechanics of tympanic membrane (TM) is crucial for investigating the acoustic transmission through the ear. In this study, we studied the wrinkling behavior of tympanic membrane when it is exposed to mismatched air pressure between the ambient and the middle ear. The Rayleigh-Ritz method is adopted to analyze the critical wrinkling pressure and the fundamental eigenmode. An approximate analytical solution is obtained and validated by finite element analysis (FEA). The model will be useful in future investigations on how the wrinkling deformation of the TM alters the acoustic transmission function of the ear.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA