Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-37252871

RESUMO

Although deep learning (DL) techniques have been extensively researched in upper-limb myoelectric control, system robustness in cross-day applications is still very limited. This is largely caused by non-stable and time-varying properties of surface electromyography (sEMG) signals, resulting in domain shift impacts on DL models. To this end, a reconstruction-based method is proposed for domain shift quantification. Herein, a prevalent hybrid framework that combines a convolutional neural network (CNN) and a long short-term memory network (LSTM), i.e. CNN-LSTM, is selected as the backbone. The paring of auto-encoder (AE) and LSTM, abbreviated as LSTM-AE, is proposed to reconstruct CNN features. Based on reconstruction errors (RErrors) of LSTM-AE, domain shift impacts on CNN-LSTM can be quantified. For a thorough investigation, experiments were conducted in both hand gesture classification and wrist kinematics regression, where sEMG data were both collected in multi-days. Experiment results illustrate that, when the estimation accuracy degrades substantially in between-day testing sets, RErrors increase accordingly and can be distinct from those obtained in within-day datasets. According to data analysis, CNN-LSTM classification/regression outcomes are strongly associated with LSTM-AE errors. The average Pearson correlation coefficients could reach -0.986 ± 0.014 and -0.992 ± 0.011, respectively.


Assuntos
Memória de Longo Prazo , Redes Neurais de Computação , Humanos , Eletromiografia/métodos , Movimento (Física) , Extremidade Superior
3.
IEEE J Biomed Health Inform ; 26(8): 3822-3835, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35294368

RESUMO

To develop multi-functionalhuman-machine interfaces that can help disabled people reconstruct lost functions of upper-limbs, machine learning (ML) and deep learning (DL) techniques have been widely implemented to decode human movement intentions from surface electromyography (sEMG) signals. However, due to the high complexity of upper-limb movements and the inherent non-stable characteristics of sEMG, the usability of ML/DL based control schemes is still greatly limited in practical scenarios. To this end, tremendous efforts have been made to improve model robustness, adaptation, and reliability. In this article, we provide a systematic review on recent achievements, mainly from three categories: multi-modal sensing fusion to gain additional information of the user, transfer learning (TL) methods to eliminate domain shift impacts on estimation models, and post-processing approaches to obtain more reliable outcomes. Special attention is given to fusion strategies, deep TL frameworks, and confidence estimation. Research challenges and emerging opportunities, with respect to hardware development, public resources, and decoding strategies, are also analysed to provide perspectives for future developments.


Assuntos
Membros Artificiais , Aprendizado Profundo , Eletromiografia/métodos , Humanos , Aprendizado de Máquina , Movimento , Reprodutibilidade dos Testes , Extremidade Superior
4.
Artigo em Inglês | MEDLINE | ID: mdl-34086574

RESUMO

Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a pre-trained CNN model usually suffers from severe degradation when testing on a new individual, and this is mainly due to domain shift where characteristics of training and testing sEMG data differ substantially. To enhance inter-subject performances of CNN in the wrist kinematics estimation, we propose a novel regression scheme for supervised domain adaptation (SDA), based on which domain shift effects can be effectively reduced. Specifically, a two-stream CNN with shared weights is established to exploit source and target sEMG data simultaneously, such that domain-invariant features can be extracted. To tune CNN weights, both regression losses and a domain discrepancy loss are employed, where the former enable supervised learning and the latter minimizes distribution divergences between two domains. In this study, eight healthy subjects were recruited to perform wrist flexion-extension movements. Experiment results illustrated that the proposed regression SDA outperformed fine-tuning, a state-of-the-art transfer learning method, in both single-single and multiple-single scenarios of kinematics estimation. Unlike fine-tuning which suffers from catastrophic forgetting, regression SDA can maintain much better performances in original domains, which boosts the model reusability among multiple subjects.


Assuntos
Redes Neurais de Computação , Punho , Fenômenos Biomecânicos , Eletromiografia , Humanos , Articulação do Punho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA