Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255904

RESUMO

Rice blast is one of the most devastating diseases, causing a significant reduction in global rice production. Developing and utilizing resistant varieties has proven to be the most efficient and cost-effective approach to control blasts. However, due to environmental pressure and intense pathogenic selection, resistance has rapidly broken down, and more durable resistance genes are being discovered. In this paper, a novel wall-associated kinase (WAK) gene, Pb4, which confers resistance to rice blast, was identified through a genome-wide association study (GWAS) utilizing 249 rice accessions. Pb4 comprises an N-terminal signal peptide, extracellular GUB domain, EGF domain, EGF-Ca2+ domain, and intracellular Ser/Thr protein kinase domain. The extracellular domain (GUB domain, EGF domain, and EGF-Ca2+ domain) of Pb4 can interact with the extracellular domain of CEBiP. Additionally, its expression is induced by chitin and polygalacturonic acid. Furthermore, transgenic plants overexpressing Pb4 enhance resistance to rice blast. In summary, this study identified a novel rice blast-resistant gene, Pb4, and provides a theoretical basis for understanding the role of WAKs in mediating rice resistance against rice blast disease.


Assuntos
Fator de Crescimento Epidérmico , Estudo de Associação Genômica Ampla , Quitina , Leucócitos , Plantas Geneticamente Modificadas/genética
2.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430507

RESUMO

Rice blast is a worldwide fungal disease that seriously affects the yield and quality of rice. Identification of resistance genes against rice blast disease is one of the effective ways to control this disease. However, panicle blast resistance genes, which are useful in the fields, have rarely been studied due to the difficulty in phenotypic identification and the environmental influences. Here, panicle blast resistance-3 (Pb3) was identified by a genome-wide association study (GWAS) based on the panicle blast resistance phenotypes of 230 Rice Diversity Panel I (RDP-I) accessions with 700,000 single-nucleotide polymorphism (SNP) markers. A total of 16 panicle blast resistance loci (PBRLs) within three years including one repeated locus PBRL3 located in chromosome 11 were identified. In addition, 7 genes in PBRL3 were identified as candidate genes by haplotype analysis, which showed significant differences between resistant and susceptible varieties. Among them, one nucleotide-binding domain and Leucine-rich Repeat (NLR) gene Pb3 was highly conserved in multiple resistant rice cultivars, and its expression was significantly induced after rice blast inoculation. Evolutionary analysis showed that Pb3 was a typical disease resistance gene containing coiled-coil, NB-ARC, and LRR domains. T-DNA insertion mutants and CRISPR lines of Pb3 showed significantly reduced panicle blast resistance. These results indicate that Pb3 is a panicle blast resistance gene and GWAS is a rapid method for identifying panicle blast resistance in rice.


Assuntos
Magnaporthe , Oryza , Estudo de Associação Genômica Ampla , Proteínas NLR/genética , Proteínas NLR/metabolismo , Magnaporthe/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Front Plant Sci ; 13: 853195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548300

RESUMO

Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases in rice and can affect rice production worldwide. Rice plasma membrane (PM) proteins are crucial for rapidly and precisely establishing a defense response in plant immunity when rice and blast fungi interact. However, the plant-immunity-associated vesicle trafficking network mediated by PM proteins is poorly understood. In this study, to explore changes in PM proteins during M. oryzae infection, the PM proteome was analyzed via iTRAQ in the resistant rice landrace Heikezijing. A total of 831 differentially expressed proteins (DEPs) were identified, including 434 upregulated and 397 downregulated DEPs. In functional analyses, DEPs associated with vesicle trafficking were significantly enriched, including the "transport" term in a Gene Ontology enrichment analysis, the endocytosis and phagosome pathways in a Encyclopedia of Genes and Genomes analysis, and vesicle-associated proteins identified via a protein-protein interaction network analysis. OsNPSN13, a novel plant-specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) 13 protein, was identified as an upregulated DEP, and transgenic plants overexpressing this gene showed enhanced blast resistance, while transgenic knockdown plants were more susceptible than wild-type plants. The changes in abundance and putative functions of 20 DEPs revealed a possible vesicle trafficking network in the M. oryzae-rice interaction. A comparative proteomic analysis of plasma membrane proteins in rice leaves revealed a plant-immunity-associated vesicle trafficking network that is provoked by blast fungi; these results provide new insights into rice resistance responses against rice blast fungi.

4.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628477

RESUMO

Rice blast is one of the main diseases in rice and can occur in different rice growth stages. Due to the complicated procedure of panicle blast identification and instability of panicle blast infection influenced by the environment, most cloned rice resistance genes are associated with leaf blast. In this study, a rice panicle blast resistance gene, Pb2, was identified by genome-wide association mapping based on the panicle blast resistance phenotypes of 230 Rice Diversity Panel 1 (RDP1) accessions with 700,000 single-nucleotide polymorphism (SNP) markers. A genome-wide association study identified 18 panicle blast resistance loci (PBRL) within two years, including 9 reported loci and 2 repeated loci (PBRL2 and PBRL13, PBRL10 and PBRL18). Among them, the repeated locus (PBRL10 and PBRL18) was located in chromosome 11. By haplotype and expression analysis, one of the Nucleotide-binding domain and Leucine-rich Repeat (NLR) Pb2 genes was highly conserved in multiple resistant rice cultivars, and its expression was significantly upregulated after rice blast infection. Pb2 encodes a typical NBS-LRR protein with NB-ARC domain and LRR domain. Compared with wild type plants, the transgenic rice of Pb2 showed enhanced resistance to panicle and leaf blast with reduced lesion number. Subcellular localization of Pb2 showed that it is located on plasma membrane, and GUS tissue-staining observation found that Pb2 is highly expressed in grains, leaf tips and stem nodes. The Pb2 transgenic plants showed no difference in agronomic traits with wild type plants. It indicated that Pb2 could be useful for breeding of rice blast resistance.


Assuntos
Magnaporthe , Oryza , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Chumbo/metabolismo , Magnaporthe/genética , Proteínas NLR/metabolismo , Nucleotídeos/metabolismo , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant Cell ; 31(5): 1077-1093, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30923230

RESUMO

Brassinosteroids (BRs) are steroid hormones that play essential roles in plant growth and development. We previously cloned qGL3, a major quantitative trait locus regulating grain length in rice (Oryza sativa). The O. sativa japonica var N411 has extra-large grains compared with the O. sativa indica var 9311, and the recessive qgl3 allele from N411 contributes positively to grain length. qGL3 encodes a putative protein phosphatase with Kelch-like repeat domains, an ortholog of Arabidopsis (Arabidopsis thaliana) brassinosteroid-insensitive1 SUPPRESSOR1 (BSU1). BSU1 positively regulates BR signaling, while overexpression of qGL3 induced BR loss-of-function phenotypes. Both qGL3N411 and qGL39311 physically interact with the rice glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinase 3 (OsGSK3), an ortholog of Arabidopsis BR INSENSITIVE2 (BIN2). qGL39311 dephosphorylates OsGSK3, but qGL3N411 lacks this activity. Knocking out OsGSK3 enhances BR signaling and induces nuclear localization of O. sativa BRASSINAZOLE RESISTANT1 (OsBZR1). Unlike the dephosphorylation of BIN2 (which leads to protein degradation) in Arabidopsis, qGL3 dephosphorylates and stabilizes OsGSK3 in rice. These results demonstrate that qGL3 suppresses BR signaling by regulating the phosphorylation and stability of OsGSK3, which modulates OsBZR1 phosphorylation and subcellular distribution. Our study clarifies the role of qGL3 in the regulation of grain length and provides insight into BR signaling, including the differences between rice and Arabidopsis.


Assuntos
Brassinosteroides/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Mutação com Perda de Função , Oryza/enzimologia , Oryza/fisiologia , Fosforilação , Proteínas de Plantas/genética
7.
Rice (N Y) ; 12(1): 18, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911847

RESUMO

BACKGROUND: Rice blast caused by Magnaporthe oryzae is the most devastating disease in rice production. Compared with seedling blast, panicle blast is considered to be more destructive, which can occur without being preceded by severe seedling blast. However, panicle blast resistance research is rarely reported. RESULTS: Bodao, a japonica landrace from Taihu Lake region, showed a high level of panicle blast resistance. In this study, a mapping population of 212 recombination inbreeding lines (RILs) was developed from a cross of Bodao and the susceptible cultivar Suyunuo, and the RILs were evaluated for panicle blast resistance in three trials. Two quantitative trait loci (QTLs) qPb11-1 and qPb6-1 for panicle-blast resistance were identified, including a major QTL qPb11-1 (Pb-bd1) on chromosome 11 of Bodao explaining from 55.31% to 71.68% of the phenotype variance, and a minor QTL qPb6-1 on chromosome 6 of Suyunuo explaining from 3.54% to 6.98% of the phenotype variance. With the various segregation populations, Pb-bd1 was fine mapped in a 40.6 Kb region flanked by markers BS83 and BS98, and six candidate genes were identified within this region, including one gene encoding NAC domain-containing protein, one gene encoding unknown expression proteins, two genes encoding nucleotide binding site-leucine rich repeat (NBS-LRR) type disease resistance proteins, and two genes encoding von Willebrand factor type A (VWA) domain containing proteins. For application in rice breeding, three introgression lines of Pb-bd1with significantly enhanced panicle blast resistance were developed by using molecular assisted method (MAS) from the commercial variety Nanjing46 (NJ46). CONCLUSION: Two QTLs, qPb11-1(Pb-bd1) and qPb6-1 conferring panicle blast resistance, were identified from japonica landrace Bodao and Suyunuo.qPb11-1(Pb-bd1) was fine mapped in a 40.6 Kb region flanked by marker BS83 and BS98. Three introgression lines of Pb-bd1with significantly enhanced panicle blast resistance were developed by MAS method from the commercial variety NJ46. It indicated that Pb-bd1 would be useful gene source in panicle blast resistance breeding.

8.
Plant Physiol ; 179(4): 1330-1342, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30617050

RESUMO

Magnaporthe oryzae is a fungal pathogen that causes rice (Oryza sativa) blast. SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are key components in vesicle trafficking in eukaryotic cells and are known to contribute to fungal pathogen resistance. Syntaxin of Plants121 (SYP121), a Qa-SNARE, has been reported to function in nonhost resistance in Arabidopsis (Arabidopsis thaliana). However, the functions of SYP121 in host resistance to rice blast are largely unknown. Here, we report that the rice SYP121 protein, OsSYP121, accumulates at fungal penetration sites and mediates host resistance to rice blast. OsSYP121 is plasma membrane localized and its expression was obviously induced by the rice blast in both the blast-resistant rice landrace Heikezijing and the blast-susceptible landrace Suyunuo (Su). Overexpression of OsSYP121 in Su resulted in enhanced resistance to blast. Knockdown of OsSYP121 expression in Su resulted in a more susceptible phenotype. However, knockdown of OsSYP121 expression in the resistant landrace Heikezijing resulted in susceptibility to the blast fungus. The POsSYP121 ::GFP-OsSYP121 accumulated at rice blast penetration sites in transgenic rice, as observed by confocal microscopy. Yeast two-hybrid results showed that OsSYP121 can interact with OsSNAP32 (Synaptosome-associated protein of 32 kD) and Vesicle-associated membrane protein714/724. The interaction between OsSYP121 and OsSNAP32 may contribute to host resistance to rice blast. Our study reveals that OsSYP121 plays an important role in rice blast resistance as it is a key component in vesicle trafficking.


Assuntos
Interações Hospedeiro-Patógeno , Magnaporthe/fisiologia , Oryza/metabolismo , Imunidade Vegetal , Proteínas de Plantas/fisiologia , Oryza/imunologia , Oryza/microbiologia , Plantas Geneticamente Modificadas
9.
Plant Physiol ; 175(1): 424-437, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28701352

RESUMO

Calcium signaling is essential for environmental responses including immune responses. Here, we provide evidence that the evolutionarily conserved protein BONZAI1 (BON1) functions together with autoinhibited calcium ATPase10 (ACA10) and ACA8 to regulate calcium signals in Arabidopsis. BON1 is a plasma membrane localized protein that negatively regulates the expression of immune receptor genes and positively regulates stomatal closure. We found that BON1 interacts with the autoinhibitory domains of ACA10 and ACA8, and the aca10 loss-of-function (LOF) mutants have an autoimmune phenotype similar to that of the bon1 LOF mutants. Genetic evidences indicate that BON1 positively regulates the activities of ACA10 and ACA8. Consistent with this idea, the steady level of calcium concentration is increased in both aca10 and bon1 mutants. Most strikingly, cytosolic calcium oscillation imposed by external calcium treatment was altered in aca10, aca8, and bon1 mutants in guard cells. In addition, calcium- and pathogen-induced stomatal closure was compromised in the aca10 and bon1 mutants. Taken together, this study indicates that ACA10/8 and BON1 physically interact on plasma membrane and function in the generation of cytosol calcium signatures that are critical for stomatal movement and impact plant immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Sinalização do Cálcio , ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Arabidopsis/imunologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio , ATPases Transportadoras de Cálcio/genética , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Genes Reporter , Homeostase , Mutação com Perda de Função , Proteínas de Membrana/genética , Imunidade Vegetal , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Estômatos de Plantas/fisiologia
10.
Phytopathology ; 107(1): 84-91, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27819540

RESUMO

Heikezijing, a japonica rice landrace from the Taihu region of China, exhibited broad-spectrum resistance to more than 300 isolates of the blast pathogen (Magnaporthe oryzae). In our previous research, we fine mapped a broad-spectrum resistance gene, Pi-hk1, in chromosome 11. In this research, 2010-9(G1), one of the predominant races of blast in the Taihu Lake region of China, was inoculated into 162 recombinant inbred lines (RIL) and two parents, Heikezijing and Suyunuo, for mapping the resistance-blast quantitative trait loci (QTL). Three QTL (Lsqtl4-1, Lsqtl9-1, and Lsqtl11-1) associated with lesion scores were detected on chromosomes 4, 9, and 11 and two QTL (Lnqtl1-1 and Lnqtl9-1) associated with average lesion numbers were detected on chromosomes 1 and 9. The QTL Lsqtl9-1 conferring race-specific resistance to 2010-9(G1) at seedling stages showed logarithm of the odds scores of 9.10 and phenotypic variance of 46.19% and might be a major QTL, named Pi-hk2. The line RIL84 with Pi-hk2 derived from a cross between Heikezijing and Suyunuo was selected as Pi-hk2 gene donor for developing fine mapping populations. According to the resistance evaluation of recombinants of three generations (BC1F2, BC1F3, and BC1F4), Pi-hk2 was finally mapped to a 143-kb region between ILP-19 and RM24048, and 18 candidate genes were predicted, including genes that encode pleiotropic drug resistance protein 4 (n = 2), WRKY74 (n = 1), cytochrome b5-like heme/steroid-binding domain containing protein (n = 1), protein kinase (n = 1), and ankyrin repeat family protein (n = 1). These results provide essential information for cloning of Pi-hk2 and its potential utility in breeding resistant rice cultivars by marker-assisted selection.


Assuntos
Resistência à Doença/genética , Magnaporthe/fisiologia , Oryza/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Cruzamento , China , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Marcadores Genéticos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Oryza/imunologia , Oryza/microbiologia , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Plântula/genética , Plântula/imunologia , Plântula/microbiologia
11.
PLoS One ; 11(12): e0169417, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28036378

RESUMO

Rice blast is a destructive disease caused by Magnaporthe oryzae, and it has a large impact on rice production worldwide. Compared with leaf blast resistance, our understanding of panicle blast resistance is limited. The japonica landrace Jiangnanwan from Taihu Lake region in China shows highly resistance to panicle and leaf blast. In this study, three generations (F2:5, F2:6, F2:7) consisting of 221 RILs (recombination inbreeding lines), developed from the cross of Jiangnanwan and Suyunuo, a susceptible-blast japonica variety, were evaluated for panicle blast resistance in the fields and leaf blast resistance in greenhouse in Nanjing in 2013, 2014 and 2015. A blast resistance gene Pi-jnw1 referring to panicle blast resistance and leaf blast resistance was identified in the three generations and located in the region of RM27273 and RM27381 in chromosome 11. The RIL18 line harboring Pi-jnw1 was selected to be backcrossed with Suyunuo to develop BC2F2 populations. According to the genotyping of 1,150 BC2F2 individuals and panicle blast and leaf blast resistance evaluation of 47 recombinants between RM27150 and RM27381, Pi-jnw1 was finally mapped to the 282 kb region between markers W28 and BS39. This study revealed that Jiangnanwan harboring a panicle blast and leaf blast resistance gene Pi-jnw1 could be a genetic source for breeding new rice cultivars with panicle blast resistance.


Assuntos
Resistência à Doença/genética , Magnaporthe/crescimento & desenvolvimento , Oryza/genética , Oryza/microbiologia , Melhoramento Vegetal/métodos , Doenças das Plantas/microbiologia , China , Mapeamento Cromossômico , Cruzamentos Genéticos , Magnaporthe/genética , Oryza/imunologia , Proteínas de Plantas/genética
12.
Phytopathology ; 103(11): 1162-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23718837

RESUMO

One Japonica rice landrace, Heikezijing, from the Taihu Lake region of China, exhibits broad-spectrum resistance to rice blast. As characterized in our previous research, a main-effect resistance (R) gene, Pi-hk1, in Heikezijing against five isolates (GD10-279a, JS2004-141-1, JS2004-185, JS90-78, and Hoku1) was roughly mapped on the long arm of chromosome 11. To fine map Pi-hk1, one recombinant inbred line (RIL), RIL72 (F2:8), from the cross between Heikezijing and blast-susceptible variety Suyunuo, was further crossed and backcrossed with Suyunuo to produce a BC1F2 population of 477 individuals. Inoculation experiments with the representative isolate Hoku 1 indicated that RIL72 carries a single dominant R gene for blast resistance. With the help of advanced BC1F3 (915 plants), BC1F4 (4,459 plants), and BC1F5 (2,000 plants) mapping populations, Pi-hk1 was finally mapped to a 107-kb region between molecular markers P3586 and ILP3, and co-segregated with the markers P4098, RM7654, and P4099. By sequence analysis of Heikezijing bacterial artificial chromosome clones covering Pi-hk1 region, 16 predicted genes were identified within this region, including three nucleotide-binding site leucine-rich repeat candidate genes. These results provide essential information for cloning of Pi-hk1 and its application in rice breeding for broad-spectrum blast resistance by marker-assisted selection.


Assuntos
Resistência à Doença/genética , Magnaporthe/patogenicidade , Oryza/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Cruzamento , China , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Regulação da Expressão Gênica de Plantas , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/microbiologia
13.
Mol Biol Rep ; 40(2): 1201-10, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23070916

RESUMO

The CDF family is a ubiquitous family that has been identified in prokaryotes, eukaryotes, and archaea. Members of this family are important heavy metal transporters that transport metal ions out of the cytoplasm. In this research, a full length cDNA named Oryza sativa Zn Transporter 1 (OZT1) that closely related to rat ZnT-2 (Zn Transporter 2) gene was isolated from rice. The OZT1 encoding a CDF family protein shares 28.2 % ~ 84.3 % of identities and 49.3 % ~ 90.9 % of similarities with other zinc transporters such as RnZnT-2, HsZnT-8, RnZnT-8 and AtMTP1. OZT1 was constitutively expressed in various rice tissues. The OZT1 expression was significantly induced both in the seedlings of japonica rice Nipponbare and indica rice IR26 in response to Zn(2+) and Cd(2+) treatments. Besides, OZT1 expression was also increased when exposed to other excess metals, such as Cu(2+), Fe(2+) and Mg(2+). Subcellular localization analysis indicated that OZT1 localized to vacuole. Heterologous expression of OZT1 in yeast increased tolerance to Zn(2+) and Cd(2+) stress but not the Mg(2+) stress. Together, OZT1 is a CDF family vacuolar zinc transporter conferring tolerance to Zn(2+) and Cd(2+) stress, which is important to transporting and homeostasis of Zn, Cd or other heavy metals in plants.


Assuntos
Proteínas de Transporte/genética , Oryza/genética , Proteínas de Plantas/genética , Vacúolos/metabolismo , Adaptação Fisiológica , Sequência de Aminoácidos , Cloreto de Cádmio/metabolismo , Proteínas de Transporte/biossíntese , Proteínas de Transporte/química , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Homeostase , Modelos Moleculares , Dados de Sequência Molecular , Oryza/metabolismo , Filogenia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Estrutura Secundária de Proteína , Proteínas Recombinantes , Saccharomyces cerevisiae , Plântula , Análise de Sequência de DNA , Estresse Fisiológico , Ativação Transcricional , Sulfato de Zinco/metabolismo
14.
PLoS One ; 7(12): e51202, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236455

RESUMO

The key to plant survival under NaCl salt stress is maintaining a low Na(+) level or Na(+)/K(+) ratio in the cells. A population of recombinant inbred lines (RILs, F(2:9)) derived from a cross between the salt-tolerant japonica rice variety Jiucaiqing and the salt-sensitive indica variety IR26, was used to determine Na(+) and K(+) concentrations in the roots and shoots under three different NaCl stress conditions (0, 100 and 120 mM NaCl). A total of nine additive QTLs were identified by QTL Cartographer program using single-environment phenotypic values, whereas eight additive QTLs were identified by QTL IciMapping program. Among these additive QTLs, five were identified by both programs. Epistatic QTLs and QTL-by-environment interactions were detected by QTLNetwork program in the joint analyses of multi-environment phenotypic values, and one additive QTL and nine epistatic QTLs were identified. There were three epistatic QTLs identified for Na(+) in roots (RNC), three additive QTLs and two epistatic QTLs identified for Na(+) in shoots (SNC), four additive QTLs identified for K(+) in roots (RKC), four additive QTLs and three epistatic QTLs identified for K(+) in shoots (SKC) and one additive QTL and one epistatic QTL for salt tolerance rating (STR). The phenotypic variation explained by each additive, epistatic QTL and QTL×environment interaction ranged from 8.5 to 18.9%, 0.5 to 5.3% and 0.7 to 7.5%, respectively. By comparing the chromosomal positions of these additive QTLs with those previously identified, five additive QTLs, qSNC9, qSKC1, qSKC9, qRKC4 and qSTR7, might represent novel salt tolerance loci. The identification of salt tolerance in selected RILs showed that a major QTL qSNC11 played a significant role in rice salt tolerance, and could be used to improve salt tolerance of commercial rice varieties with marker-assisted selection (MAS) approach.


Assuntos
Oryza/genética , Raízes de Plantas/química , Brotos de Planta/química , Potássio/análise , Locos de Características Quantitativas/genética , Sódio/análise , Estresse Fisiológico/fisiologia , Análise de Variância , Mapeamento Cromossômico , Cruzamentos Genéticos , Epistasia Genética/genética , Oryza/química , Fenótipo , Cloreto de Sódio
15.
Plant Mol Biol ; 80(3): 337-50, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22930448

RESUMO

The TFIIIA-type zinc finger transcription factors are involved in plant development and abiotic stress responses. Most TFIIIA-type zinc finger proteins are transcription repressors due to existence of an EAR-motif in their amino acid sequences. In this work, we found that ZFP182, a TFIIIA-type zinc finger protein, forms a homodimer in the nucleus and exhibits trans-activation activity in yeast cells. The deletion analysis indicated that a Leu-rich region at C-terminus is required for the trans-activation. Overexpression of ZFP182 significantly enhanced multiple abiotic stress tolerances, including salt, cold and drought tolerances in transgenic rice. Overexpression of ZFP182 promotes accumulation of compatible osmolytes, such as free proline and soluble sugars, in transgenic rice. ZFP182 activates the expression of OsP5CS encoding pyrroline-5-carboxylate synthetase and OsLEA3 under stress conditions, while OsDREB1A and OsDREB1B were regulated by ZFP182 under both normal and stress conditions. Interestingly, site-directed mutagenesis assay showed that DRE-like elements in ZFP182 promoter are involved in dehydration-induced expression of ZFP182. The yeast two-hybrid assay revealed that ZFP182 interacted with several ribosomal proteins including ZIURP1, an ubiquitin fused to ribosomal protein L40. The in vivo and in vitro interactions of ZFP182 and ZIURP1 were further confirmed by bimolecular fluorescence complementation and His pull-down assays. Our studies provide new clues in the understanding of the mechanisms for TFIIIA-type zinc finger transcription factor mediated stress tolerance and a candidate gene for improving stress tolerance in crops.


Assuntos
Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Regiões Promotoras Genéticas/genética , Fator de Transcrição TFIIIA/genética , Sequência de Aminoácidos , Sequência de Bases , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Temperatura Baixa , Desidratação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Oryza/enzimologia , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Prolina/metabolismo , Multimerização Proteica , Tolerância ao Sal , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Deleção de Sequência , Estresse Fisiológico , Transativadores/genética , Transativadores/metabolismo , Fator de Transcrição TFIIIA/metabolismo , Ativação Transcricional , Dedos de Zinco
16.
Theor Appl Genet ; 125(4): 807-15, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22678666

RESUMO

Salt tolerance of rice (Oryza sativa L.) at the seedling stage is one of the major determinants of its stable establishment in saline soil. One population of recombinant inbred lines (RILs, F (2:9)) derived from a cross between the salt-tolerant variety Jiucaiqing and the salt-sensitive variety IR26 was used to determine the genetic mechanism of four salt tolerance indices, seedling height (SH), dry shoot weight (DSW), dry root weight (DRW) and Na/K ratios (Na/K) in roots after 10 days in three salt concentrations (0.0, 0.5 and 0.7 % NaCl). The main effect QTLs (M-QTLs) and epistatic QTLs (E-QTLs) were detected by QTL IciMapping program using single environment phenotypic values. Eleven M-QTLs and 11 E-QTLs were identified for the salt tolerance indices. There were six M-QTLs and two E-QTLs identified for SH, three M-QTLs and five E-QTLs identified for DSW, two M-QTLs and one E-QTL identified for DRW, and three E-QTLs identified for Na/K. The phenotypic variation explained by each M-QTL and E-QTL ranged from 7.8 to 23.9 % and 13.3 to 73.7 %, respectively. The QTL-by-environment interactions were detected by QTLNetwork program in the joint analyses of multi-environment phenotypic values. Six M-QTLs and five E-QTLs were identified. The phenotypic variation explained by each QTL and QTL × environment interaction ranged from 0.95 to 6.90 % and 0.02 to 0.50 %, respectively. By comparing chromosomal positions of these M-QTLs with those previously identified, five M-QTLs qSH1.3, qSH12.1, qSH12.2, qDSW12.1 and qDRW11 might represent novel salt tolerance genes. Five selected RILs with high salt tolerance had six to eight positive alleles of the M-QTLs, indicating that pyramiding by marker-assisted selection (MAS) of M-QTLs can be applied in rice salt tolerance breeding programs.


Assuntos
Epistasia Genética , Interação Gene-Ambiente , Oryza/genética , Locos de Características Quantitativas/genética , Salinidade , Tolerância ao Sal/genética , Plântula/genética , Ligação Genética/efeitos dos fármacos , Endogamia , Oryza/efeitos dos fármacos , Oryza/fisiologia , Fenótipo , Tolerância ao Sal/efeitos dos fármacos , Plântula/efeitos dos fármacos , Cloreto de Sódio/farmacologia
17.
Gene ; 504(2): 238-44, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22583826

RESUMO

OsSYP71 is an oxidative stress and rice blast response gene that encodes a Qc-SNARE protein in rice. Qc-SNARE proteins belong to the superfamily of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), which function as important components of the vesicle trafficking machinery in eukaryotic cells. In this paper, 12 Qc-SNARE genes were isolated from rice, and expression patterns of 9 genes were detected in various tissues and in seedlings challenged with oxidative stresses and inoculated with rice blast. The expression of OsSYP71 was clearly up-regulated under these stresses. Overexpression of OsSYP71 in rice showed more tolerance to oxidative stress and resistance to rice blast than wild-type plants. These results indicate that Qc-SNAREs play an important role in rice response to environmental stresses, and OsSYP71 is useful in engineering crop plants with enhanced tolerance to oxidative stress and resistance to rice blast.


Assuntos
Genes de Plantas , Oryza/microbiologia , Estresse Oxidativo , Proteínas de Plantas/genética , Proteínas SNARE/genética , Sequência de Aminoácidos , Dados de Sequência Molecular , Oryza/genética , Filogenia , Proteínas de Plantas/química , Plantas Geneticamente Modificadas , Proteínas SNARE/química , Homologia de Sequência de Aminoácidos
18.
J Zhejiang Univ Sci B ; 11(12): 958-64, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21121075

RESUMO

Seed vigor is an important characteristic of seed quality, and rice cultivars with strong seed vigor are desirable in direct-sowing rice production for optimum stand establishment. In the present study, the quantitative trait loci (QTLs) of three traits for rice seed vigor during the germination stage, including germination rate, final germination percentage, and germination index, were investigated using one recombinant inbred line (RIL) population derived from a cross between japonica Daguandao and indica IR28, and using the multiple interval mapping (MIM) approach. The results show that indica rice presented stronger seed vigor during the germination stage than japonica rice. A total of ten QTLs, and at least five novel alleles, were detected to control rice seed vigor, and the amount of variation (R(2)) explained by an individual QTL ranged from 7.5% to 68.5%, with three major QTLs with R(2)>20%. Most of the QTLs detected here are likely to coincide with QTLs for seed weight, seed size, or seed dormancy, suggesting that the rice seed vigor might be correlated with seed weight, seed size, and seed dormancy. At least five QTLs are novel alleles with no previous reports of seed vigor genes in rice, and those major or minor QTLs could be used to significantly improve the seed vigor by marker-assisted selection (MAS) in rice.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Plântula/genética , Germinação , Vigor Híbrido/genética , Fenótipo
19.
Yi Chuan ; 32(9): 961-5, 2010 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-20870618

RESUMO

Membrane fusion in vesicle trafficking in the cells of eukaryotic organisms is mediated by soluble-N-ethyl- maleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins. OsNPSN11 is a member of Qb-SNARE gene family isolate from rice. The cDNA of OsNPSN11 was subcloned into pET-30a and fusion to the 6 × His tag. Induced by 0.5 mmol/L IPTG for four hours, the recombinant protein was highly expressed in Escherichia coli, which was purified by Ni2+ -NTA His-bind resin affinity chromatography column to be used as an antigen to raise the antibody in New Zealand rabbits. Western blotting analysis showed that the antibody can specifically recognize the expressed antigen and the OsNPSN11 in plasma membrane protein from various rice tissues. This indicated that the antibody can be used for expres-sion analysis in transgenic rice.


Assuntos
Anticorpos/imunologia , Formação de Anticorpos , Oryza/química , Proteínas Qb-SNARE/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Western Blotting , Proteínas de Transporte/química , Escherichia coli/genética , Coelhos , Proteínas SNARE/imunologia
20.
Phytopathology ; 100(8): 822-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20626286

RESUMO

Rice blast is one of the most devastating diseases affecting rice production worldwide. One japonica landrace, Heikezijing, from the Taihu Lake area in China, has been reported to be highly resistant to most of the rice blast isolates collected from China and Japan. To effectively dissect the inheritance of its resistance, a population of recombinant inbred lines (RILs) (F(2:8)) was constructed from a cross between Heikezijing and Suyunuo, a blast-susceptible cultivar. Nineteen blast isolates from China and Japan were inoculated into 166 RILs and their parents, and 22 quantitative trait loci (QTLs) conferring resistance to these isolates were identified and mapped onto rice chromosomes 1, 7, 9, 11, and 12. Most of the QTLs conferred race-specific resistance to blast. Some QTLs, such as qtl11-5-5, conferred resistance to two or more isolates. One blast-resistant gene cluster, including qtl11-2-2, qtl11-3-1, qtl11-4-1, qtl11-5-5, qtl11-6-1, qtl11-7-5, qtl11-8-2, qtl11-9-2, qtl11-10-4, and qtl11-11-1, was found on the long arm of chromosome 11 in the japonica landrace. These loci offered effective resistance toward as many as 17 isolates, including 16 isolates from seven Chinese race groups and 1 isolate from Japan. The results from this study suggest that the Heikezijing landrace involves a number of genes that are associated with broad-spectrum resistance to rice blast.


Assuntos
Interações Hospedeiro-Patógeno , Magnaporthe/fisiologia , Oryza/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA