Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Planta ; 259(1): 25, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108922

RESUMO

MAIN CONCLUSION: Xanthoria parietina survivability in Mars-like conditions was supported by water-lysis efficiency recovery and antioxidant content balancing with ROS production after 30 days of exposure. Xanthoria parietina (L.) Th. Fr. is a widespread lichen showing tolerance against air pollutants and UV-radiation. It has been tested under space-like and Mars-like conditions resulting in high recovery performances. Hereby, we aim to assess the mechanisms at the basis of the thalli resilience against multiple space stress factors. Living thalli of X. parietina were exposed to simulated Martian atmospheric conditions (Dark Mars) and UV radiation (Full Mars). Then, we monitored as vitality indicator the photosynthetic efficiency, assessed by in vivo chlorophyll emission fluorescence measurements (FM; FV/F0). The physiological defense was evaluated by analyzing the thalli antioxidant capacity. The drop of FM and FV/F0 immediately after the exposure indicated a reduction of photosynthesis. After 24 h from exposure, photosynthetic efficiency began to recover suggesting the occurrence of protective mechanisms. Antioxidant concentrations were higher during the exposure, only decreasing after 30 days. The recovery of photosynthetic efficiency in both treatments suggested a strong resilience by the photosynthetic apparatus against combined space stress factors, likely due to the boosted antioxidants at the beginning and their depletion at the end of the exposure. The overall results indicated that the production of antioxidants, along with the occurrence of photoprotection mechanisms, guarantee X. parietina survivability in Mars-like environment.


Assuntos
Marte , Resiliência Psicológica , Antioxidantes , Meio Ambiente Extraterreno , Estresse Oxidativo , Fotossíntese
2.
Astrobiology ; 23(11): 1213-1227, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37962841

RESUMO

The concept of a biosignature is widely used in astrobiology to suggest a link between some observation and a biological cause, given some context. The term itself has been defined and used in several ways in different parts of the scientific community involved in the search for past or present life on Earth and beyond. With the ongoing acceleration in the search for life in distant time and/or deep space, there is a need for clarity and accuracy in the formulation and reporting of claims. Here, we critically review the biosignature concept(s) and the associated nomenclature in light of several problems and ambiguities emphasized by recent works. One worry is that these terms and concepts may imply greater certainty than is usually justified by a rational interpretation of the data. A related worry is that terms such as "biosignature" may be inherently misleading, for example, because the divide between life and non-life-and their observable effects-is fuzzy. Another worry is that different parts of the multidisciplinary community may use non-equivalent or conflicting definitions and conceptions, leading to avoidable confusion. This review leads us to identify a number of pitfalls and to suggest how they can be circumvented. In general, we conclude that astrobiologists should exercise particular caution in deciding whether and how to use the concept of biosignature when thinking and communicating about habitability or life. Concepts and terms should be selected carefully and defined explicitly where appropriate. This would improve clarity and accuracy in the formulation of claims and subsequent technical and public communication about some of the most profound and important questions in science and society. With this objective in mind, we provide a checklist of questions that scientists and other interested parties should ask when assessing any reported detection of a "biosignature" to better understand exactly what is being claimed.


Assuntos
Aceleração , Planeta Terra , Exobiologia
3.
Sci Rep ; 13(1): 4893, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966209

RESUMO

Xanthoria parietina (L.) Th. Fr. is a widely spread foliose lichen showing high tolerance against UV-radiation thanks to parietin, a secondary lichen substance. We exposed samples of X. parietina under simulated Martian conditions for 30 days to explore its survivability. The lichen's vitality was monitored via chlorophyll a fluorescence that gives an indication for active light reaction of photosynthesis, performing in situ and after-treatment analyses. Raman spectroscopy and TEM were used to evaluate carotenoid preservation and possible variations in the photobiont's ultrastructure respectively. Significant differences in the photo-efficiency between UV irradiated samples and dark-kept samples were observed. Fluorescence values correlated with temperature and humidity day-night cycles. The photo-efficiency recovery showed that UV irradiation caused significant effects on the photosynthetic light reaction. Raman spectroscopy showed that the carotenoid signal from UV exposed samples decreased significantly after the exposure. TEM observations confirmed that UV exposed samples were the most affected by the treatment, showing chloroplastidial disorganization in photobionts' cells. Overall, X. parietina was able to survive the simulated Mars conditions, and for this reason it may be considered as a candidate for space long-term space exposure and evaluations of the parietin photodegradability.


Assuntos
Líquens , Marte , Clorofila A , Meio Ambiente Extraterreno , Carotenoides
4.
Astrobiology ; 22(10): 1199-1209, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36194868

RESUMO

The effect of a Mars-like UV flux and γ-radiation on the detectability of biomarkers in dried cells of Chroococcidiopsis sp. CCMEE 029 was investigated using a fluorescence sandwich microarray immunoassay. The production of anti-Chroococcidiopsis antibodies allowed the immunoidentification of a reduced, though still detectable, signal in dried cells mixed with phyllosilicatic and sulfatic Mars regolith simulants after exposure to 6.8 × 105 kJ/m2 of a Mars-like UV flux. No signal was detected in dried cells that were not mixed with minerals after 1.4 × 105 kJ/m2. For γ-radiation (60Co), no detectable variations of the fluorescence signal occurred in dried cells exposed to 113 kGy compared to non-irradiated dried cells. Our results suggest that immunoassay-based techniques could be used to detect life tracers eventually present in the martian subsurface in freshly excavated materials only if shielded from solar UV. The high structural integrity of biomarkers irradiated with γ-radiation that mimics a dose accumulated in 13 Myr at 2 m depth from the martian surface has implications for the potential detectability of similar organic molecules/compounds by future life-detection missions such as the ExoMars Rosalind Franklin rover.


Assuntos
Cianobactérias , Marte , Biomarcadores , Cianobactérias/efeitos da radiação , Meio Ambiente Extraterreno , Minerais , Radiação Ionizante
5.
Sci Adv ; 8(36): eabn7412, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070383

RESUMO

Two rover missions to Mars aim to detect biomolecules as a sign of extinct or extant life with, among other instruments, Raman spectrometers. However, there are many unknowns about the stability of Raman-detectable biomolecules in the martian environment, clouding the interpretation of the results. To quantify Raman-detectable biomolecule stability, we exposed seven biomolecules for 469 days to a simulated martian environment outside the International Space Station. Ultraviolet radiation (UVR) strongly changed the Raman spectra signals, but only minor change was observed when samples were shielded from UVR. These findings provide support for Mars mission operations searching for biosignatures in the subsurface. This experiment demonstrates the detectability of biomolecules by Raman spectroscopy in Mars regolith analogs after space exposure and lays the groundwork for a consolidated space-proven database of spectroscopy biosignatures in targeted environments.

6.
Sci Rep ; 12(1): 12580, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869252

RESUMO

Understanding the impact of long-term exposure of microorganisms to space is critical in understanding how these exposures impact the evolution and adaptation of microbial life under space conditions. In this work we subjected Nostoc sp. CCCryo 231-06, a cyanobacterium capable of living under many different ecological conditions, and also surviving in extreme ones, to a 23-month stay at the International Space Station (the Biology and Mars Experiment, BIOMEX, on the EXPOSE-R2 platform) and returned it to Earth for single-cell genome analysis. We used microfluidic technology and single cell sequencing to identify the changes that occurred in the whole genome of single Nostoc cells. The variant profile showed that biofilm and photosystem associated loci were the most altered, with an increased variant rate of synonymous base pair substitutions. The cause(s) of these non-random alterations and their implications to the evolutionary potential of single bacterial cells under long-term cosmic exposure warrants further investigation.


Assuntos
Exobiologia , Nostoc , Planeta Terra , Meio Ambiente Extraterreno , Nostoc/genética , Raios Ultravioleta
7.
iScience ; 25(5): 104291, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35573199

RESUMO

The Nostoc sp. strain CCCryo 231-06 is a cyanobacterial strain capable of surviving under extreme conditions and thus is of great interest for the astrobiology community. The knowledge of its complete genome sequence would serve as a guide for further studies. However, a major concern has been placed on the effects of contamination on the quality of sequencing data without a reference genome. Here, we report the use of microfluidic technology combined with single cell sequencing and de novo assembly to minimize the contamination and recover the complete genome of the Nostoc strain CCCryo 231-06 with high quality. 100% of the whole genome was recovered with all contaminants removed and a strongly supported phylogenetic tree. The data reported can be useful for comparative genomics for phylogenetic and taxonomic studies. The method used in this work can be applied to studies that require high-quality assemblies of genomes of unknown microorganisms.

8.
Environ Microbiol ; 24(7): 2938-2950, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35437941

RESUMO

The Moon is characterized by extremely harsh conditions due to ultraviolet irradiation, wide temperature extremes, vacuum resulting from the absence of an atmosphere and high ionizing radiation. Therefore, its surface may provide a unique platform to investigate the effects of such conditions. For lunar exploration with the Lunar Gateway platform, exposure experiments in Low Earth Orbit are useful testbeds to prepare for lunar space experiments and to understand how and if potential biomarkers are influenced by extra-terrestrial conditions. During the BIOMEX (BIOlogy and Mars EXperiment) project, dried colonies of the fungus Cryomyces antarcticus grown on Lunar Regolith Analogue (LRA) were exposed to space conditions for 16 months aboard the EXPOSE-R2 payload outside the International Space Station. In this study, we investigated the stability/degradation of fungal biomarkers in LRA after exposure to (i) simulated space and (ii) real space conditions, using Raman spectroscopy, gas chromatography-mass spectrometry and DNA amplification. The results demonstrated that fungal biomarkers were detectable after 16 months of real space exposure. This work will contribute to the interpretation of data from future biological experiments in the Cislunar orbit with the Lunar Gateway platform and/or on the lunar surface, in preparation for the next step of human exploration.


Assuntos
Lua , Voo Espacial , Atmosfera , Planeta Terra , Meio Ambiente Extraterreno , Humanos , Raios Ultravioleta
9.
Appl Spectrosc ; 76(6): 723-729, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35128962

RESUMO

Organic molecules are prime targets in the search for life on other planetary bodies in the Solar System. Understanding their preservation potential and detectability after ionic irradiation, with fluences potentially representing those received for several millions to billions of years at Mars or in interplanetary space, is a crucial goal for astrobiology research. In order to be able to perform in situ characterization of such organic molecules under ionic irradiation in the near future, a feasibility experiment was performed with polymer test samples to validate the optical configuration and the irradiation chamber geometry. We present here a Raman in situ investigation of the evolution of a series of polymers during proton irradiation. To achieve this goal, a new type of Raman optical probe was designed, which documented that proton irradiation (with a final fluence of 3.1014 at·cm-2) leads to an increase in the background level of the signal, potentially explained by the scission of the polymeric chains and by atom displacements creating defects in the materials. To improve the setup further, a micro-Raman probe and a temperature-controlled sample holder are under development to provide higher spectral and spatial resolutions (by reducing the depth of field and laser spot size), to permit Raman mapping as well as to avoid any thermal effects.


Assuntos
Prótons , Análise Espectral Raman , Exobiologia/métodos , Lasers , Análise Espectral Raman/métodos , Temperatura
10.
Life (Basel) ; 11(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833088

RESUMO

The success of an astrobiological search for life campaign on Mars, or other planetary bodies in the Solar System, relies on the detectability of past or present microbial life traces, namely, biosignatures. Spectroscopic methods require little or no sample preparation, can be repeated almost endlessly, and can be performed in contact or even remotely. Such methods are therefore ideally suited to use for the detection of biosignatures, which can be confirmed with supporting instrumentation. Here, we discuss the use of Raman and Fourier Transform Infrared (FT-IR) spectroscopies for the detection and characterization of biosignatures from colonies of the fungus Cryomyces antarcticus, grown on Martian analogues and exposed to increasing doses of UV irradiation under dried conditions. The results report significant UV-induced DNA damage, but the non-exceeding of thresholds for allowing DNA amplification and detection, while the spectral properties of the fungal melanin remained unaltered, and pigment detection and identification was achieved via complementary analytical techniques. Finally, this work found that fungal cell wall compounds, likely chitin, were not degraded, and were still detectable even after high UV irradiation doses. The implications for the preservation and detection of biosignatures in extraterrestrial environments are discussed.

11.
J Fungi (Basel) ; 7(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34682280

RESUMO

The discovery of life on other planets and moons in our solar system is one of the most important challenges of this era. The second ExoMars mission will look for traces of extant or extinct life on Mars. The instruments on board the rover will be able to reach samples with eventual biomarkers until 2 m of depth under the planet's surface. This exploration capacity offers the best chance to detect biomarkers which would be mainly preserved compared to samples on the surface which are directly exposed to harmful environmental conditions. Starting with the studies of the endolithic meristematic black fungus Cryomyces antarcticus, which has proved its high resistance under extreme conditions, we analyzed the stability and the resistance of fungal biomarkers after exposure to simulated space and Mars-like conditions, with Raman and Gas Chromatography-Mass Spectrometry, two of the scientific payload instruments on board the rover.

12.
Microorganisms ; 9(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065975

RESUMO

The existence of microbial activity hotspots in temperate regions of Earth is driven by soil heterogeneities, especially the temporal and spatial availability of nutrients. Here we investigate whether microbial activity hotspots also exist in lithic microhabitats in one of the most arid regions of the world, the Atacama Desert in Chile. While previous studies evaluated the total DNA fraction to elucidate the microbial communities, we here for the first time use a DNA separation approach on lithic microhabitats, together with metagenomics and other analysis methods (i.e., ATP, PLFA, and metabolite analysis) to specifically gain insights on the living and potentially active microbial community. Our results show that hypolith colonized rocks are microbial hotspots in the desert environment. In contrast, our data do not support such a conclusion for gypsum crust and salt rock environments, because only limited microbial activity could be observed. The hypolith community is dominated by phototrophs, mostly Cyanobacteria and Chloroflexi, at both study sites. The gypsum crusts are dominated by methylotrophs and heterotrophic phototrophs, mostly Chloroflexi, and the salt rocks (halite nodules) by phototrophic and halotolerant endoliths, mostly Cyanobacteria and Archaea. The major environmental constraints in the organic-poor arid and hyperarid Atacama Desert are water availability and UV irradiation, allowing phototrophs and other extremophiles to play a key role in desert ecology.

13.
Life (Basel) ; 10(6)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521820

RESUMO

Carotenoids are promising targets in our quest to search for life on Mars due to their biogenic origin and easy detection by Raman spectroscopy, especially with a 532 nm excitation thanks to resonance effects. Ionizing radiations reaching the surface and subsurface of Mars are however detrimental for the long-term preservation of biomolecules. We show here that desiccation can protect carotenoid Raman signatures in the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 even after high-dose gamma irradiation. Indeed, while the height of the carotenoids Raman peaks was considerably reduced in hydrated cells exposed to gamma irradiation, it remained stable in dried cells irradiated with the highest tested dose of 113 kGy of gamma rays, losing only 15-20% of its non-irradiated intensity. Interestingly, even though the carotenoid Raman signal of hydrated cells lost 90% of its non-irradiated intensity, it was still detectable after exposure to 113 kGy of gamma rays. These results add insights into the preservation potential and detectability limit of carotenoid-like molecules on Mars over a prolonged period of time and are crucial in supporting future missions carrying Raman spectrometers to Mars' surface.

14.
Front Microbiol ; 10: 2312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681194

RESUMO

The survival limits of the desert cyanobacterium Chroococcidiopsis were challenged by rewetting dried biofilms and dried biofilms exposed to 1.5 × 103 kJ/m2 of a Mars-like UV, after 7 years of air-dried storage. PCR-stop assays revealed the presence of DNA lesions in dried biofilms and an increased accumulation in dried-UV-irradiated biofilms. Different types and/or amounts of DNA lesions were highlighted by a different expression of uvrA, uvrB, uvrC, phrA, and uvsE genes in dried-rewetted biofilms and dried-UV-irradiated-rewetted biofilms, after rehydration for 30 and 60 min. The up-regulation in dried-rewetted biofilms of uvsE gene encoding an UV damage endonuclease, suggested that UV-damage DNA repair contributed to the repair of desiccation-induced damage. While the phrA gene encoding a photolyase was up-regulated only in dried-UV-irradiated-rewetted biofilms. Nucleotide excision repair genes were over-expressed in dried-rewetted biofilms and dried-UV-irradiated-rewetted biofilms, with uvrC gene showing the highest increase in dried-UV-irradiated-rewetted biofilms. Dried biofilms preserved intact mRNAs (at least of the investigated genes) and 16S ribosomal RNA that the persistence of the ribosome machinery and mRNAs might have played a key role in the early phase recovery. Results have implications for the search of extra-terrestrial life by contributing to the definition of habitability of astrobiologically relevant targets such as Mars or planets orbiting around other stars.

15.
Astrobiology ; 19(8): 1053-1062, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30817173

RESUMO

Antibody-based analytical instruments are under development to detect signatures of life on planetary bodies. Antibodies are molecular recognition reagents able to detect their target at sub-nanomolar concentrations, with high affinity and specificity. Studying antibody binding performances under space conditions is mandatory to convince space agencies of the adequacy of this promising tool for planetary exploration. To complement previous ground-based experiments on antibody resistance to simulated irradiation, we evaluate in this paper the effects of antibody exposure to real space conditions during the EXPOSE-R2 mission outside the International Space Station. The absorbed dose of ionizing radiation recorded during the 588 days of this mission (220 mGy) corresponded to the absorbed dose expected during a mission to Mars. Moreover, samples faced, at the same time as irradiation, thermal cycles, launch constraints, and long-term storage. A model biochip was used in this study with antibodies in freeze-dried form and under two formats: free or covalently grafted to a solid surface. We found that antibody-binding performances were not significantly affected by cosmic radiation, and more than 40% of the exposed antibody, independent of its format, was still functional during all this experiment. We conclude that antibody-based instruments are well suited for in situ analysis on planetary bodies.


Assuntos
Anticorpos/imunologia , Meio Ambiente Extraterreno , Fotoquímica , Astronave , Peroxidase do Rábano Silvestre/imunologia , Ligação Proteica
16.
Astrobiology ; 19(8): 1063-1074, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30817199

RESUMO

Some microarray-based instruments that use bioaffinity receptors such as antibodies or aptamers are under development to detect signatures of past or present life on planetary bodies. Studying the resistance of such instruments against space constraints and cosmic rays in particular is a prerequisite. We used several ground-based facilities to study the resistance of aptamers to various types of particles (protons, electrons, neutrons, and carbon ions) at different energies and fluences. We also tested the resistance of aptamers during the EXPOSE-R2 mission outside the International Space Station (ISS). The accumulated dose measured after the 588 days of this mission (220 mGy) corresponds to the accumulated dose that can be expected during a mission to Mars. We found that the recognition ability of fluorescently labeled aptamers was not significantly affected during short-term exposure experiments taking into account only one type of radiation at a time. However, we demonstrated that the same fluorescent dye was significantly affected by temperature variations (-21°C to +58°C) and storage throughout the entirety of the ISS experiment (60% of signal loss). This induced a large variability of aptamer signal in our analysis. However, we found that >50% of aptamers were still functional after the whole EXPOSE-R2 mission. We conclude that aptamer-based instruments are well suited for in situ analysis on planetary bodies, but the detection step requires additional investigations.


Assuntos
Aptâmeros de Nucleotídeos/química , Meio Ambiente Extraterreno , Fotoquímica , Astronave , Raios Ultravioleta , Temperatura
17.
Astrobiology ; 19(8): 1008-1017, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30741568

RESUMO

Dried biofilms and dried multilayered planktonic counterparts obtained from three desert strains of Chroococcidiopsis were exposed to low Earth conditions by using the EXPOSE-R2 facility outside the International Space Station. During the space mission, samples in Tray 1 (space vacuum and solar radiation, from λ ≈ 110 nm) and Tray 2 (Mars-like UV flux, λ > 200 nm and Mars-like atmosphere) received total UV (200-400 nm) fluences of about 4.58 × 102 kJ/m2 and 4.92 × 102 kJ/m2, respectively, and 0.5 Gy of cosmic ionizing radiation. Postflight analyses were performed on 2.5-year-old samples due to the space mission duration, from launch to sample return to the lab. The occurrence of survivors was determined by evaluating cell division upon rehydration and damage to the genome and photosynthetic apparatus by polymerase chain reaction-stop assays and confocal laser scanning microscopy. Biofilms recovered better than their planktonic counterparts, accumulating less damage not only when exposed to UV radiation under space and Mars-like conditions but also when exposed in dark conditions to low Earth conditions and laboratory control conditions. This suggests that, despite the shielding provided by top-cell layers being sufficient for a certain degree of survival of the multilayered planktonic samples, the enhanced survival of biofilms was due to the presence of abundant extracellular polymeric substances and to additional features acquired upon drying.


Assuntos
Biofilmes , Cianobactérias/fisiologia , Clima Desértico , Dessecação , Planeta Terra , Meio Ambiente Extraterreno , Marte , Viabilidade Microbiana , Cianobactérias/genética , Dano ao DNA , Matriz Extracelular de Substâncias Poliméricas , Genoma Bacteriano , Fotossíntese , Pigmentos Biológicos/metabolismo , Plâncton/fisiologia
18.
Astrobiology ; 19(2): 158-169, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742497

RESUMO

In the ESA space experiment BIOMEX (BIOlogy and Mars EXperiment), dried Chroococcidiopsis cells were exposed to Mars-like conditions during the EXPOSE-R2 mission on the International Space Station. The samples were exposed to UV radiation for 469 days and to a Mars-like atmosphere for 722 days, approaching the conditions that could be faced on the surface of Mars. Once back on Earth, cell survival was tested by growth-dependent assays, while confocal laser scanning microscopy and PCR-based assay were used to analyze the accumulated damage in photosynthetic pigments (chlorophyll a and phycobiliproteins) and genomic DNA, respectively. Survival occurred only for dried cells (4-5 cell layers thick) mixed with the martian soil simulants P-MRS (phyllosilicatic martian regolith simulant) and S-MRS (sulfatic martian regolith simulant), and viability was only maintained for a few hours after space exposure to a total UV (wavelength from 200 to 400 nm) radiation dose of 492 MJ/m2 (attenuated by 0.1% neutral density filters) and 0.5 Gy of ionizing radiation. These results have implications for the hypothesis that, during Mars's climatic history, desiccation- and radiation-tolerant life-forms could have survived in habitable niches and protected niches while transported.


Assuntos
Cianobactérias/fisiologia , Marte , Cianobactérias/efeitos da radiação , Dano ao DNA , Clima Desértico , Exobiologia , Fotossíntese/efeitos da radiação , Raios Ultravioleta
19.
Astrobiology ; 19(2): 145-157, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742496

RESUMO

BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit.


Assuntos
Cianobactérias/fisiologia , Exobiologia , Líquens/fisiologia , Marte , Biofilmes , Cianobactérias/efeitos da radiação , Deinococcus/fisiologia , Deinococcus/efeitos da radiação , Meio Ambiente Extraterreno , Líquens/efeitos da radiação , Marchantia/fisiologia , Marchantia/efeitos da radiação , Methanosarcina/fisiologia , Methanosarcina/efeitos da radiação , Minerais , Raios Ultravioleta
20.
Micromachines (Basel) ; 9(8)2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30424300

RESUMO

Single-cell sequencing is a powerful technology that provides the capability of analyzing a single cell within a population. This technology is mostly coupled with microfluidic systems for controlled cell manipulation and precise fluid handling to shed light on the genomes of a wide range of cells. So far, single-cell sequencing has been focused mostly on human cells due to the ease of lysing the cells for genome amplification. The major challenges that bacterial species pose to genome amplification from single cells include the rigid bacterial cell walls and the need for an effective lysis protocol compatible with microfluidic platforms. In this work, we present a lysis protocol that can be used to extract genomic DNA from both gram-positive and gram-negative species without interfering with the amplification chemistry. Corynebacterium glutamicum was chosen as a typical gram-positive model and Nostoc sp. as a gram-negative model due to major challenges reported in previous studies. Our protocol is based on thermal and chemical lysis. We consider 80% of single-cell replicates that lead to >5 ng DNA after amplification as successful attempts. The protocol was directly applied to Gloeocapsa sp. and the single cells of the eukaryotic Sphaerocystis sp. and achieved a 100% success rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA