Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Biol Chem ; 300(6): 107339, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38705388

RESUMO

During sporulation, Bacillus subtilis forms an asymmetric septum, dividing the cell into two compartments, a mother cell and a forespore. The site of asymmetric septation is linked to the membrane where FtsZ and SpoIIE initiate the formation of the Z-ring and the E-ring, respectively. These rings then serve as a scaffold for the other cell division and peptidoglycan synthesizing proteins needed to build the septum. However, despite decades of research, not enough is known about how the asymmetric septation site is determined. Here, we identified and characterized the interaction between SpoIIE and RefZ. We show that these two proteins transiently colocalize during the early stages of asymmetric septum formation when RefZ localizes primarily from the mother cell side of the septum. We propose that these proteins and their interplay with the spatial organization of the chromosome play a role in controlling asymmetric septum positioning.

2.
J Biotechnol ; 359: 48-58, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36179792

RESUMO

Streptococcus agalactiae (Group B Streptococcus, GBS) is primarily known as a major neonatal pathogen. In adults, these bacteria often colonize the gastrointestinal and urogenital tracts. Treatment of infections using antibiotics is often complicated by recurrences caused by multi-resistant streptococci. Endolysin EN534 from prophage A2 of human isolate Streptococcus agalactiae KMB-534 has a modular structure consisting of two terminal catalytic domains, amidase_3 and CHAP, and one central binding domain, LysM. The EN534 gene was cloned into an expression vector, and the corresponding recombinant protein EN534-C was expressed in Escherichia coli in a soluble form and isolated by affinity chromatography. The lytic activity of this endolysin was tested on cell wall substrates from different GBS serotypes, B. subtilis, L. jensenii, and E. coli. The enzyme lysed streptococci, but not beneficial vaginal lactobacilli. The isolated protein is stable in a temperature range of 20-37 °C. Calcium ions enhanced the activity of the enzyme in the pH range from 5.0 to 8.0. The exolytic activity of EN534-C was observed by time-lapse fluorescence microscopy on a S. agalactiae CCM 6187 substrate. Recombinant endolysin EN534-C may have the potential to become an antimicrobial agent for the treatment of S. agalactiae infections.


Assuntos
Bacteriófagos , Humanos , Amidoidrolases/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Cálcio/metabolismo , Endopeptidases/genética , Endopeptidases/farmacologia , Endopeptidases/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo
3.
Nat Commun ; 13(1): 4708, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953469

RESUMO

The European X-ray Free Electron Laser (XFEL) and Linac Coherent Light Source (LCLS) II are extremely intense sources of X-rays capable of generating Serial Femtosecond Crystallography (SFX) data at megahertz (MHz) repetition rates. Previous work has shown that it is possible to use consecutive X-ray pulses to collect diffraction patterns from individual crystals. Here, we exploit the MHz pulse structure of the European XFEL to obtain two complete datasets from the same lysozyme crystal, first hit and the second hit, before it exits the beam. The two datasets, separated by <1 µs, yield up to 2.1 Å resolution structures. Comparisons between the two structures reveal no indications of radiation damage or significant changes within the active site, consistent with the calculated dose estimates. This demonstrates MHz SFX can be used as a tool for tracking sub-microsecond structural changes in individual single crystals, a technique we refer to as multi-hit SFX.


Assuntos
Elétrons , Lasers , Cristalografia por Raios X , Radiografia , Raios X
4.
Front Microbiol ; 13: 842623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330768

RESUMO

Chromium of anthropogenic origin contaminates the environment worldwide. The toxicity of chromium, a group I human carcinogen, is greatest when it is in a hexavalent oxidation state, Cr(VI). Cr(VI) is actively transported into the cell, triggering oxidative damage intracellularly. Due to the abundance of unspecific intracellular reductants, any microbial species is capable of bio-transformation of toxic Cr(VI) to innocuous Cr(III), however, this process is often lethal. Only some bacterial species are capable of sustaining the vegetative growth in the presence of a high concentration of Cr(VI) and thus operate as self-sustainable bioremediation agents. One of the successful microbial Cr(VI) detoxification strategies is the activation of chromate efflux pumps. This work describes transplantation of the chromate efflux pump from the potentially pathogenic but highly Cr resistant Bacillus pseudomycoides environmental strain into non-pathogenic but only transiently Cr tolerant Bacillus subtilis strain. In our study, we compared the two Bacillus spp. strains harboring evolutionarily diverged chromate efflux proteins. We have found that individual cells of the Cr-resistant B. pseudomycoides environmental strain accumulate less Cr than the cells of B. subtilis strain. Further, we found that survival of the B. subtilis strain during the Cr stress can be increased by the introduction of the chromate transporter from the Cr resistant environmental strain into its genome. Additionally, the expression of B. pseudomycoides chromate transporter ChrA in B. subtilis seems to be activated by the presence of chromate, hinting at versatility of Cr-efflux proteins. This study outlines the future direction for increasing the Cr-tolerance of non-pathogenic species and safe bioremediation using soil bacteria.

5.
Microorganisms ; 9(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34946061

RESUMO

Bacillus subtilis has served as a model microorganism for many decades [...].

6.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361115

RESUMO

DivIVA is a protein initially identified as a spatial regulator of cell division in the model organism Bacillus subtilis, but its homologues are present in many other Gram-positive bacteria, including Clostridia species. Besides its role as topological regulator of the Min system during bacterial cell division, DivIVA is involved in chromosome segregation during sporulation, genetic competence, and cell wall synthesis. DivIVA localizes to regions of high membrane curvature, such as the cell poles and cell division site, where it recruits distinct binding partners. Previously, it was suggested that negative curvature sensing is the main mechanism by which DivIVA binds to these specific regions. Here, we show that Clostridioides difficile DivIVA binds preferably to membranes containing negatively charged phospholipids, especially cardiolipin. Strikingly, we observed that upon binding, DivIVA modifies the lipid distribution and induces changes to lipid bilayers containing cardiolipin. Our observations indicate that DivIVA might play a more complex and so far unknown active role during the formation of the cell division septal membrane.


Assuntos
Proteínas de Bactérias/metabolismo , Cardiolipinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Clostridioides difficile/metabolismo , Lipídeos de Membrana/metabolismo , Clostridioides difficile/crescimento & desenvolvimento , Transporte Proteico
7.
J Appl Crystallogr ; 54(Pt 1): 7-21, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33833637

RESUMO

The science of X-ray free-electron lasers (XFELs) critically depends on the performance of the X-ray laser and on the quality of the samples placed into the X-ray beam. The stability of biological samples is limited and key biomolecular transformations occur on short timescales. Experiments in biology require a support laboratory in the immediate vicinity of the beamlines. The XBI BioLab of the European XFEL (XBI denotes XFEL Biology Infrastructure) is an integrated user facility connected to the beamlines for supporting a wide range of biological experiments. The laboratory was financed and built by a collaboration between the European XFEL and the XBI User Consortium, whose members come from Finland, Germany, the Slovak Republic, Sweden and the USA, with observers from Denmark and the Russian Federation. Arranged around a central wet laboratory, the XBI BioLab provides facilities for sample preparation and scoring, laboratories for growing prokaryotic and eukaryotic cells, a Bio Safety Level 2 laboratory, sample purification and characterization facilities, a crystallization laboratory, an anaerobic laboratory, an aerosol laboratory, a vacuum laboratory for injector tests, and laboratories for optical microscopy, atomic force microscopy and electron microscopy. Here, an overview of the XBI facility is given and some of the results of the first user experiments are highlighted.

8.
Microorganisms ; 9(2)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573199

RESUMO

Bacillus subtilis endospores are exceptionally resistant cells encircled by two protective layers: a petidoglycan layer, termed the cortex, and the spore coat, a proteinaceous layer. The formation of both structures depends upon the proper assembly of a basement coat layer, which is composed of two proteins, SpoIVA and SpoVM. The present work examines the interactions of SpoIVA and SpoVM with coat proteins recruited to the spore surface during the early stages of coat assembly. We showed that the alanine racemase YncD associates with two morphogenetic proteins, SpoIVA and CotE. Mutant spores lacking the yncD gene were less resistant against wet heat and germinated to a greater extent than wild-type spores in the presence of micromolar concentrations of l-alanine. In seeking a link between the coat and cortex formation, we investigated the interactions between SpoVM and SpoIVA and the proteins essential for cortex synthesis and found that SpoVM interacts with a penicillin-binding protein, SpoVD, and we also demonstrated that SpoVM is crucial for the proper localization of SpoVD. This study shows that direct contacts between coat morphogenetic proteins with a complex of cortex-synthesizing proteins could be one of the tools by which bacteria couple cortex and coat formation.

9.
Colloids Surf B Biointerfaces ; 197: 111425, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33099149

RESUMO

Bacillus subtilis spore coat is a bacterial proteinaceous structure with amazing characteristics of self-organization, unique resiliency, toughness and flexibility in the same time. The spore coat represents a complex multilayered protein structure which is composed of over 80 coat proteins. Some of these proteins form two dimensional crystal structures who's low resolution ternary structure as was determined by electron microscopy. However, there are no 3D structure of these proteins known, due to a problem of preparing 3D crystals which could be analyzed by synchrotron X-ray sources. In the present study, Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS) was applied to investigate a diffraction pattern of CotY 2D crystals formed on Langmuir monolayer films. We observed two distinct diffraction rings and their position corresponds to a structure with the lattice spacing of 10.6 Å and 5.0 Å, respectively. Obtaining diffractions of 2D crystals pave the way to determination of 3D structure of coat proteins by using strong X-ray sources.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Proteínas de Bactérias , Parede Celular , Microscopia Eletrônica
10.
Nat Commun ; 11(1): 5672, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144574

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Nat Commun ; 11(1): 4963, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009406

RESUMO

Bacterial nanotubes are membranous structures that have been reported to function as conduits between cells to exchange DNA, proteins, and nutrients. Here, we investigate the morphology and formation of bacterial nanotubes using Bacillus subtilis. We show that nanotube formation is associated with stress conditions, and is highly sensitive to the cells' genetic background, growth phase, and sample preparation methods. Remarkably, nanotubes appear to be extruded exclusively from dying cells, likely as a result of biophysical forces. Their emergence is extremely fast, occurring within seconds by cannibalizing the cell membrane. Subsequent experiments reveal that cell-to-cell transfer of non-conjugative plasmids depends strictly on the competence system of the cell, and not on nanotube formation. Our study thus supports the notion that bacterial nanotubes are a post mortem phenomenon involved in cell disintegration, and are unlikely to be involved in cytoplasmic content exchange between live cells.


Assuntos
Bacillus subtilis/citologia , Bacillus subtilis/metabolismo , Viabilidade Microbiana , Nanotubos/química , Bacillus subtilis/genética , Bacillus subtilis/ultraestrutura , Conjugação Genética , DNA Bacteriano/genética , Plasmídeos/genética
12.
Comput Struct Biotechnol J ; 18: 1474-1486, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637045

RESUMO

Here we use singe-molecule optical proteomics and computational analysis of live cell bacterial images, using millisecond super-resolved tracking and quantification of fluorescently labelled protein SpoIIE in single live Bacillus subtilis bacteria to understand its crucial role in cell development. Asymmetric cell division during sporulation in Bacillus subtilis presents a model system for studying cell development. SpoIIE is a key integral membrane protein phosphatase that couples morphological development to differential gene expression. However, the basic mechanisms behind its operation remain unclear due to limitations of traditional tools and technologies. We instead used advanced single-molecule imaging of fluorescently tagged SpoIIE in real time on living cells to reveal vital changes to the patterns of expression, localization, mobility and stoichiometry as cells undergo asymmetric cell division then engulfment of the smaller forespore by the larger mother cell. We find, unexpectedly, that SpoIIE forms tetramers capable of cell- and stage-dependent clustering, its copy number rising to ~ 700 molecules as sporulation progresses. We observed that slow moving SpoIIE clusters initially located at septa are released as mobile clusters at the forespore pole as phosphatase activity is manifested and compartment-specific RNA polymerase sigma factor, σF, becomes active. Our findings reveal that information captured in its quaternary organization enables one protein to perform multiple functions, extending an important paradigm for regulatory proteins in cells. Our findings more generally demonstrate the utility of rapid live cell single-molecule optical proteomics for enabling mechanistic insight into the complex processes of cell development during the cell cycle.

13.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630428

RESUMO

Peptidoglycan is generally considered one of the main determinants of cell shape in bacteria. In rod-shaped bacteria, cell elongation requires peptidoglycan synthesis to lengthen the cell wall. In addition, peptidoglycan is synthesized at the division septum during cell division. Sporulation of Bacillus subtilis begins with an asymmetric cell division. Formation of the sporulation septum requires almost the same set of proteins as the vegetative septum; however, these two septa are significantly different. In addition to their differences in localization, the sporulation septum is thinner and it contains SpoIIE, a crucial sporulation specific protein. Here we show that peptidoglycan biosynthesis is linked to the cell division machinery during sporulation septum formation. We detected a direct interaction between SpoIIE and GpsB and found that both proteins co-localize during the early stages of asymmetric septum formation. We propose that SpoIIE is part of a multi-protein complex which includes GpsB, other division proteins and peptidoglycan synthesis proteins, and could provide a link between the peptidoglycan synthesis machinery and the complex morphological changes required for forespore formation during B. subtilis sporulation.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Esporos Bacterianos/metabolismo , Divisão Celular Assimétrica/fisiologia , Proteínas de Bactérias/metabolismo , Ciclo Celular , Divisão Celular/fisiologia , Forma Celular , Parede Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação às Penicilinas/fisiologia , Peptidoglicano/metabolismo , Esporos Bacterianos/fisiologia
14.
Future Microbiol ; 14: 353-363, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30855188

RESUMO

Bacillus subtilis is a rod-shaped bacterium which divides precisely at mid-cell during vegetative growth. Unlike Escherichia coli, another model organism used for studying cell division, B. subtilis can also divide asymmetrically during sporulation, the simplest cell differentiation process. The asymmetrically positioned sporulation septum serves as a morphological foundation for establishing differential gene expression in the smaller forespore and larger mother cell. Both vegetative and sporulation septation events are fine-tuned with cell cycle, and placement of both septa are highly precise. We understand in some detail how this is achieved during vegetative growth but have limited information about how the asymmetric septation site is determined during sporulation.


Assuntos
Bacillus subtilis/citologia , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Esporos Bacterianos/citologia , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
15.
World J Microbiol Biotechnol ; 35(4): 56, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30900044

RESUMO

Investigation of bacterial chromate tolerance has mostly focused on strains originating from polluted sites. In the present study, we isolated 33 chromate tolerant strains from diverse environments harbouring varying concentrations of chromium (Cr). All of these strains were able to grow on minimal media with at least 2 mM hexavalent chromium (Cr(VI)) and their classification revealed that they belonged to 12 different species and 8 genera, with a majority (n = 20) being affiliated to the Bacillus cereus group. Selected B. cereus group strains were further characterised for their chromate tolerance level and the ability to remove toxic Cr(VI) from solution. A similar level of chromate tolerance was observed in isolates originating from environments harbouring high or low Cr. Reference B. cereus strains exhibited the same Cr(VI) tolerance which indicates that a high chromate tolerance could be an intrinsic group characteristic. Cr(VI) removal varied from 22.9% (strain PCr2a) to 98.5% (strain NCr4). Strains NCr1a and PCr12 exhibited the ability to grow to the greatest extent in Cr(VI) containing media (maximum growth of 65.3% and 64.9% relative to that in the absence of Cr(VI), respectively) accompanied with high chromate removal activity (73.7% and 74.4%, respectively), making them prime candidates for the investigation of chromate tolerance mechanisms in Gram-positive bacteria and Cr(VI) bioremediation applications.


Assuntos
Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Cromatos/toxicidade , Cromo/toxicidade , Tolerância a Medicamentos , Microbiologia do Solo , Poluentes do Solo , Bacillus/classificação , Bacillus/efeitos dos fármacos , Bacillus/isolamento & purificação , Bactérias/genética , Biodegradação Ambiental , Meios de Cultura/química , Microbiologia Ambiental , Sedimentos Geológicos/microbiologia , Testes de Sensibilidade Microbiana , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
16.
Nat Commun ; 9(1): 4025, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279492

RESUMO

The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a ß-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.

17.
PLoS One ; 13(8): e0201979, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30092000

RESUMO

Probably one of the most controversial questions about the cell division of Bacillus subtilis, a rod-shaped bacterium, concerns the mechanism that ensures correct division septum placement-at mid-cell during vegetative growth but closer to one end during sporulation. In general, bacteria multiply by binary fission, in which the division septum forms almost exactly at the cell centre. How the division machinery achieves such accuracy is a question of continuing interest. We understand in some detail how this is achieved during vegetative growth in Escherichia coli and B. subtilis, where two main negative regulators, nucleoid occlusion and the Min system, help to determine the division site, but we still do not know exactly how the asymmetric septation site is determined during sporulation in B. subtilis. Clearly, the inhibitory effects of the nucleoid occlusion and Min system on polar division have to be overcome. We evaluated the positioning of the asymmetric septum and its accuracy by statistical analysis of the site of septation. We also clarified the role of SpoIIE, RefZ and MinCD on the accuracy of this process. We determined that the sporulation septum forms approximately 1/6 of a cell length from one of the cell poles with high precision and that SpoIIE, RefZ and MinCD have a crucial role in precisely localizing the sporulation septum. Our results strongly support the idea that asymmetric septum formation is a very precise and highly controlled process regulated by a still unknown mechanism.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Esporos Bacterianos/crescimento & desenvolvimento , Proteínas de Bactérias/química , Divisão Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Escherichia coli/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Mutação
18.
Anaerobe ; 50: 22-31, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29408597

RESUMO

One of the key regulators ensuring proper Z-ring placement in rod-shaped bacteria is the Min system. It does so by creating a concentration gradient of the MinC septation inhibitor along the cell axis. In Escherichia coli, this gradient is established by a MinE-mediated pole-to-pole oscillation of the MinCDE complex. In Bacillus subtilis, the creation of an inhibitory gradient relies on the MinJ and DivIVA pair of topological determinants, which target MinCD to the newly formed cell poles. Introducing the E. coli oscillating Min system into B. subtilis leads to a sporulation defect, suggesting that oscillation is incompatible with sporulation. However, Clostridia, close endospore-forming relatives of Bacilli, do encode oscillating Min homologues in various combinations together with homologues from the less dynamic B. subtilis Min system. Here we address the questions of how these two systems could exist side-by-side and how they influence one another by studying the Clostridium beijerinckii and Clostridium difficile Min systems. The toolbox of genetic manipulations and fluorescent protein fusions in Clostridia is limited, therefore B. subtilis and E. coli were chosen as heterologous systems for studying these proteins. In B. subtilis, MinD and DivIVA interact through MinJ; here, however, we discovered that the MinD and DivIVA proteins of both C. difficile, and C. beijerinckii, interact directly, which is surprising in the latter case, since that organism also encodes a MinJ homologue. We confirm this interaction using both in vitro and in vivo methods. We also show that C. beijerinckii MinJ is probably not in direct contact with DivIVACb and, unlike B. subtilis MinJ, does not mediate the MinDCb and DivIVACb interaction. Our results suggest that the Clostridia Min system uses a new mechanism of function.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium/fisiologia , Proteínas de Bactérias/genética , Divisão Celular/genética , Genótipo , Ligação Proteica , Mapeamento de Interação de Proteínas , Transporte Proteico
19.
Microbiol Res ; 204: 72-80, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28870294

RESUMO

Bacillus subtilis spores, representatives of an exceptionally resistant dormant cell type, are encircled by a thick proteinaceous layer called the spore coat. More than 80 proteins assemble into four distinct coat layers: a basement layer, an inner coat, an outer coat and a crust. As the spore develops inside the mother cell, spore coat proteins synthesized in the cytoplasm are gradually deposited onto the prespore surface. A small set of morphogenetic proteins necessary for spore coat morphogenesis are thought to form a scaffold to which the rest of the coat proteins are attached. Extensive localization and proteomic studies using wild type and mutant spores have revealed the arrangement of individual proteins within the spore coat layers. In this study we examined the interactions between the proteins localized to the outer coat and crust using a bacterial two hybrid system. These two layers are composed of at least 25 components. Self-interactions were observed for most proteins and numerous novel interactions were identified. The most interesting contacts are those made with the morphogenetic proteins CotE, CotY and CotZ; these could serve as a basis for understanding the specific roles of particular proteins in spore coat morphogenesis.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Domínios e Motivos de Interação entre Proteínas , Esporos Bacterianos/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Citoplasma/metabolismo , Escherichia coli/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Morfogênese , Proteômica , Esporos Bacterianos/genética , Técnicas do Sistema de Duplo-Híbrido , beta-Galactosidase/metabolismo
20.
Front Microbiol ; 8: 1046, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642754
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA