Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Direct ; 8(2): e565, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38389929

RESUMO

The head-to-head oriented pair of melon resistance genes, Fom-1 and Prv, control resistance to Fusarium oxysporum races 0 and 2 and papaya ringspot virus (PRSV), respectively. They encode, via several RNA splice variants, TIR-NBS-LRR proteins, and Prv has a C-terminal extra domain with a second NBS homologous sequence. In other systems, paired R-proteins were shown to operate by "labor division," with one protein having an extra integrated domain that directly binds the pathogen's Avr factor, and the second protein executing the defense response. We report that the expression of the two genes in two pairs of near-isogenic lines was higher in the resistant isoline and inducible by F. oxysporum race 2 but not by PRSV. The intergenic DNA region separating the coding sequences of the two genes acted as a bi-directional promoter and drove GUS expression in transgenic melon roots and transgenic tobacco plants. Expression of both genes was strong in melon root tips, around the root vascular cylinder, and the phloem and xylem parenchyma of tobacco stems and petioles. The pattern of GUS expression suggests coordinated expression of the two genes. In agreement with the above model, Prv's extra domain was shown to interact with the cylindrical inclusion protein of PRSV both in yeast cells and in planta.

2.
J Exp Bot ; 74(15): 4579-4596, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37137337

RESUMO

The majority of plant disease resistance (R) genes encode nucleotide binding-leucine-rich repeat (NLR) proteins. In melon, two closely linked NLR genes, Fom-1 and Prv, were mapped and identified as candidate genes that control resistance to Fusarium oxysporum f.sp. melonis races 0 and 2, and to papaya ringspot virus (PRSV), respectively. In this study, we validated the function of Prv and showed that it is essential for providing resistance against PRSV infection. We generated CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9] mutants using Agrobacterium-mediated transformation of a PRSV-resistant melon genotype, and the T1 progeny proved susceptible to PRSV, showing strong disease symptoms and viral spread upon infection. Three alleles having 144, 154, and ~3 kb deletions, respectively, were obtained, all of which caused loss of resistance. Interestingly, one of the Prv mutant alleles, prvΔ154, encoding a truncated product, caused an extreme dwarf phenotype, accompanied by leaf lesions, high salicylic acid levels, and defense gene expression. The autoimmune phenotype observed at 25 °C proved to be temperature dependent, being suppressed at 32 °C. This is a first report on the successful application of CRISPR/Cas9 to confirm R gene function in melon. Such validation opens up new opportunities for molecular breeding of disease resistance in this important vegetable crop.


Assuntos
Cucurbitaceae , Resistência à Doença , Resistência à Doença/genética , Alelos , Cucurbitaceae/genética , Sistemas CRISPR-Cas , Mutagênese , Doenças das Plantas/genética
3.
Biochem Biophys Res Commun ; 460(3): 525-9, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25797621

RESUMO

The viral V2 protein is one of the key factors that Tomato yellow leaf curl geminivirus (TYLCV), a major tomato pathogen worldwide, utilizes to combat the host defense. Besides suppressing the plant RNA silencing defense by targeting the host SGS3 component of the silencing machinery, V2 also interacts with the host CYP1 protein, a papain-like cysteine protease likely involved in hypersensitive response reactions. The biological effects of the V2-CYP1 interaction, however, remain unknown. We addressed this question by demonstrating that V2 inhibits the enzymatic activity of CYP1, but does not interfere with post-translational maturation of this protein.


Assuntos
Begomovirus/fisiologia , Cisteína Proteases/metabolismo , Proteínas Virais/fisiologia , Western Blotting , Processamento de Proteína Pós-Traducional , Proteólise
4.
Plant Signal Behav ; 7(8): 983-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22827939

RESUMO

The V2 protein of Tomato yellow leaf curl geminivirus (TYLCV) is an RNA-silencing suppressor that counteracts the innate immune response of the host plant. However, this anti-host defense function of V2 may include targeting of other defensive mechanisms of the plant. Specifically, we show that V2 recognizes and directly binds the tomato CYP1 protein, a member of the family of papain-like cysteine proteases which are involved in plant defense against diverse pathogens. This binding occurred both in vitro and in vivo, within living plant cells. The V2 binding site within mCYP1 was identified in the direct proximity to the papain-like cysteine protease active site.


Assuntos
Begomovirus/metabolismo , Interações Hospedeiro-Patógeno , Papaína/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/virologia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Papaína/química , Proteínas de Plantas/química , Ligação Proteica , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA