RESUMO
BACKGROUND: Ictal brain perfusion SPECT provides higher sensitivity for the identification of the epileptic seizure onset zone (SOZ) than interictal SPECT. However, ictal SPECT is demanding due to the unpredictable waiting period for the next seizure to allow for ictal tracer injection. Thus, starting with an interictal scan and skipping the ictal scan if the interictal scan provides a SOZ candidate with high confidence could be an efficient approach. The current study estimated the rate of high-confidence SOZ candidates and the false lateralization rate among them for interictal and ictal SPECT. METHODS: 177 patients (48% females, median age 38y, interquartile range 27-48y) with ictal and interictal SPECT acquired with 99mTc-HMPAO (n = 141) or -ECD (n = 36) were included retrospectively. The vast majority of the patients was suspected to have temporal lobe epilepsy. Visual interpretation of the SPECT data was performed independently by 3 readers in 3 settings: "interictal only" (interictal SPECT and statistical hypoperfusion map), "ictal only" (ictal SPECT and hyperperfusion map), and "full" setting (side-by-side interpretation of ictal and interictal SPECT including statistical maps and SISCOM analysis). The readers lateralized the SOZ (right, left, none) and characterized their confidence using a 5-score. A case was considered "lateralizing with high confidence" if all readers lateralized to the same hemisphere with at least 4 of 5 confidence points. Lateralization of the SOZ in the "full" setting was used as reference standard. RESULTS: The proportion of "lateralizing with high confidence" cases was 4.5/31.6/38.4% in the "interictal only"/"ictal only"/"full" setting. One (12.5%) of the 8 cases that were "lateralizing with high confidence" in the "interictal only" setting lateralized to the wrong hemisphere. Among the 56 cases that were "lateralizing with high confidence" in the "ictal only" setting, 54 (96.4%) were also lateralizing in the "full" setting, all to the same hemisphere. CONCLUSIONS: Starting brain perfusion SPECT in the presurgical evaluation of epilepsy with an interictal scan to skip the ictal scan in case of a high-confidence interictal SOZ candidate is not a useful approach. In contrast, starting with an ictal scan to skip the interictal scan in case of a high-confidence ictal SOZ candidate can be recommended.
RESUMO
BACKGROUND: The aim of this study was to assess the impact of the post-injection electrical seizure duration on the identification of the seizure onset zone (SOZ) in ictal brain perfusion SPECT in presurgical evaluation of drug-resistant epilepsy. METHODS: 176 ictal SPECT performed with 99mTc-HMPAO (n = 140) or -ECD (n = 36) were included retrospectively. Visual interpretation of the SPECT images (together with individual MRI and statistical hyperperfusion maps) with respect to lateralization (right, left, none) and localization (temporal, frontal, parietal, occipital) of the SOZ was performed by 3 independent readers. Between-readers agreement was characterized by Fleiss' κ. An ictal SPECT was considered "lateralizing" if all readers agreed on right or left hemisphere. It was considered "localizing" if it was lateralizing and all readers agreed on the same lobe within the same hemisphere. The impact of injection latency and post-injection seizure duration on the proportion of lateralizing/localizing SPECT was tested by ANOVA with dichotomized (by the median) injection latency and post-injection seizure duration as between-subjects factors. RESULTS: Median [interquartile range] (full range) of injection latency and post-injection seizure duration were 30 [24, 40] (3-120) s and 50 [27, 70] (-20-660) s, respectively. Fleiss' κ for lateralization of the SOZ was largest for the combination of early (< 30 s) injection and long (> 50 s) post-injection seizure duration (κ = 0.894, all other combinations κ = 0.659-0.734). Regarding Fleiss' κ for localization of the SOZ in the 141 (80.1%) lateralizing SPECT, it was largest for early injection and short post-injection seizure duration (κ = 0.575, all other combinations κ = 0.329-0.368). The proportion of lateralizing SPECT was lower with short compared to long post-injection seizure duration (estimated marginal means 74.3% versus 86.3%, p = 0.047). The effect was mainly driven by cases with very short post-injection seizure duration ≤ 10 s (53.8% lateralizing). Injection latency in the considered range had no significant impact on the proportion of lateralizing SPECT (p = 0.390). The proportion of localizing SPECT among the lateralizing cases did not depend on injection latency or post-injection seizure duration (p ≥ 0.603). CONCLUSIONS: Short post-injection seizure duration is associated with a lower proportion of lateralizing cases in ictal brain perfusion SPECT.