Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Clin Genet ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988293

RESUMO

ANK3 encodes ankyrin-G, a protein involved in neuronal development and signaling. Alternative splicing gives rise to three ankyrin-G isoforms comprising different domains with distinct expression patterns. Mono- or biallelic ANK3 variants are associated with non-specific syndromic intellectual disability in 14 individuals (seven with monoallelic and seven with biallelic variants). In this study, we describe the clinical features of 13 additional individuals and review the data on a total of 27 individuals (16 individuals with monoallelic and 11 with biallelic ANK3 variants) and demonstrate that the phenotype for biallelic variants is more severe. The phenotypic features include language delay (92%), autism spectrum disorder (76%), intellectual disability (78%), hypotonia (65%), motor delay (68%), attention deficit disorder (ADD) or attention deficit hyperactivity disorder (ADHD) (57%), sleep disturbances (50%), aggressivity/self-injury (37.5%), and epilepsy (35%). A notable phenotypic difference was presence of ataxia in three individuals with biallelic variants, but in none of the individuals with monoallelic variants. While the majority of the monoallelic variants are predicted to result in a truncated protein, biallelic variants are almost exclusively missense. Moreover, mono- and biallelic variants appear to be localized differently across the three different ankyrin-G isoforms, suggesting isoform-specific pathological mechanisms.

2.
Res Sq ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38903062

RESUMO

The most important factor that complicates the work of dysmorphologists is the significant phenotypic variability of the human face. Next-Generation Phenotyping (NGP) tools that assist clinicians with recognizing characteristic syndromic patterns are particularly challenged when confronted with patients from populations different from their training data. To that end, we systematically analyzed the impact of genetic ancestry on facial dysmorphism. For that purpose, we established the GestaltMatcher Database (GMDB) as a reference dataset for medical images of patients with rare genetic disorders from around the world. We collected 10,980 frontal facial images - more than a quarter previously unpublished - from 8,346 patients, representing 581 rare disorders. Although the predominant ancestry is still European (67%), data from underrepresented populations have been increased considerably via global collaborations (19% Asian and 7% African). This includes previously unpublished reports for more than 40% of the African patients. The NGP analysis on this diverse dataset revealed characteristic performance differences depending on the composition of training and test sets corresponding to genetic relatedness. For clinical use of NGP, incorporating non-European patients resulted in a profound enhancement of GestaltMatcher performance. The top-5 accuracy rate increased by +11.29%. Importantly, this improvement in delineating the correct disorder from a facial portrait was achieved without decreasing the performance on European patients. By design, GMDB complies with the FAIR principles by rendering the curated medical data findable, accessible, interoperable, and reusable. This means GMDB can also serve as data for training and benchmarking. In summary, our study on facial dysmorphism on a global sample revealed a considerable cross ancestral phenotypic variability confounding NGP that should be counteracted by international efforts for increasing data diversity. GMDB will serve as a vital reference database for clinicians and a transparent training set for advancing NGP technology.

3.
J Med Genet ; 61(9): 824-832, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-38849204

RESUMO

INTRODUCTION: Tonne-Kalscheuer syndrome (TOKAS) is a recessive X-linked multiple congenital anomaly disorder caused by RLIM variations. Of the 41 patients reported, only 7 antenatal cases were described. METHOD: After the antenatal diagnosis of TOKAS by exome analysis in a family followed for over 35 years because of multiple congenital anomalies in five male fetuses, a call for collaboration was made, resulting in a cohort of 11 previously unpublished cases. RESULTS: We present a TOKAS antenatal cohort, describing 11 new cases in 6 French families. We report a high frequency of diaphragmatic hernia (9 of 11), differences in sex development (10 of 11) and various visceral malformations. We report some recurrent dysmorphic features, but also pontocerebellar hypoplasia, pre-auricular skin tags and olfactory bulb abnormalities previously unreported in the literature. Although no clear genotype-phenotype correlation has yet emerged, we show that a recurrent p.(Arg611Cys) variant accounts for 66% of fetal TOKAS cases. We also report two new likely pathogenic variants in RLIM, outside of the two previously known mutational hotspots. CONCLUSION: Overall, we present the first fetal cohort of TOKAS, describe the clinical features that made it a recognisable syndrome at fetopathological examination, and extend the phenotypical spectrum and the known genotype of this rare disorder.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Masculino , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Feto/patologia , Mutação , Fenótipo , Diagnóstico Pré-Natal , Sequenciamento do Exoma , Estudos de Associação Genética/métodos , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/diagnóstico , Linhagem , Gravidez
4.
Dev Cell ; 59(16): 2101-2117.e8, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38823394

RESUMO

Embryonic stem cells (ESCs) can differentiate into all cell types of the embryonic germ layers. ESCs can also generate totipotent 2C-like cells and trophectodermal cells. However, these latter transitions occur at low frequency due to epigenetic barriers, the nature of which is not fully understood. Here, we show that treating mouse ESCs with sodium butyrate (NaB) increases the population of 2C-like cells and enables direct reprogramming of ESCs into trophoblast stem cells (TSCs) without a transition through a 2C-like state. Mechanistically, NaB inhibits histone deacetylase activities in the LSD1-HDAC1/2 corepressor complex. This increases acetylation levels in the regulatory regions of both 2C- and TSC-specific genes, promoting their expression. In addition, NaB-treated cells acquire the capacity to generate blastocyst-like structures that can develop beyond the implantation stage in vitro and form deciduae in vivo. These results identify how epigenetics restrict the totipotent and trophectoderm fate in mouse ESCs.


Assuntos
Diferenciação Celular , Inibidores de Histona Desacetilases , Células-Tronco Embrionárias Murinas , Trofoblastos , Animais , Trofoblastos/citologia , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Diferenciação Celular/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Histona Desmetilases/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Epigênese Genética , Feminino , Acetilação/efeitos dos fármacos , Histona Desacetilases/metabolismo , Ácido Butírico/farmacologia
5.
Clin Genet ; 106(4): 512-517, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38859706

RESUMO

Despite increasing knowledge of disease-causing genes in human genetics, approximately half of the individuals affected by neurodevelopmental disorders remain genetically undiagnosed. Part of this missing heritability might be caused by genetic variants outside of protein-coding genes, which are not routinely diagnostically investigated. A recent preprint identified de novo variants in the non-coding spliceosomal snRNA gene RNU4-2 as a cause of a frequent novel syndromic neurodevelopmental disorder. Here we mined 164 whole genome sequencing (WGS) trios from individuals with neurodevelopmental or multiple congenital anomaly disorders that received diagnostic genomic investigations at our clinic. We identify a recurrent de novo RNU4-2 variant (NR_003137.2(RNU4-2):n.64_65insT) in a 5-year-old girl with severe global developmental delay, hypotonia, microcephaly, and seizures that likely explains her phenotype, given that extensive previous genetic investigations failed to identify an alternative cause. We present detailed phenotyping of the individual obtained during a 5-year follow-up. This includes photographs showing recognizable facial features for this novel disorder, which might allow prioritizing other currently unexplained affected individuals sharing similar facial features for targeted investigations of RNU4-2. This case illustrates the power of re-analysis to solve previously unexplained cases even when a diagnostic genome remains negative.


Assuntos
Transtornos do Neurodesenvolvimento , Sequenciamento Completo do Genoma , Humanos , Feminino , Pré-Escolar , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Fenótipo , RNA Nuclear Pequeno/genética , Mutação/genética , Predisposição Genética para Doença
6.
Am J Hum Genet ; 111(6): 1206-1221, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38772379

RESUMO

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.


Assuntos
Transtornos do Neurodesenvolvimento , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Epilepsia/genética , Sequenciamento do Exoma , Doenças Genéticas Ligadas ao Cromossomo X/genética , Heterozigoto , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem , Fenótipo , Canais de Potássio Shal/genética
7.
Sci Rep ; 14(1): 6917, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519529

RESUMO

Variants in the CNNM2 gene are causative for hypomagnesaemia, seizures and intellectual disability, although the phenotypes can be variable. This study aims to understand the genotype-phenotype relationship in affected individuals with CNNM2 variants by phenotypic, functional and structural analysis of new as well as previously reported variants. This results in the identification of seven variants that significantly affect CNNM2-mediated Mg2+ transport. Pathogenicity of these variants is further supported by structural modelling, which predicts CNNM2 structure to be affected by all of them. Strikingly, seizures and intellectual disability are absent in 4 out of 7 cases, indicating these phenotypes are caused either by specific CNNM2 variant only or by additional risk factors. Moreover, in line with sporadic observations from previous reports, CNNM2 variants might be associated with disturbances in parathyroid hormone and Ca2+ homeostasis.


Assuntos
Proteínas de Transporte de Cátions , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Magnésio/metabolismo , Convulsões/genética , Fenótipo , Proteínas de Transporte de Cátions/genética
8.
Eur J Hum Genet ; 32(3): 350-356, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200082

RESUMO

Numerous contiguous gene deletion syndromes causing neurodevelopmental disorders have previously been defined using cytogenetics for which only in the current genomic era the disease-causing genes have become elucidated. One such example is deletion at Xq22.2, previously associated with a neurodevelopmental disorder which has more recently been found to be caused by de novo loss-of-function variants in TCEAL1. So far, a single study reported six unrelated individuals with this monogenetic disorder, presenting with syndromic features including developmental delay especially affecting expressive speech, intellectual disability, autistic-like behaviors, hypotonia, gait abnormalities and mild facial dysmorphism, in addition to ocular, gastrointestinal, and immunologic abnormalities. Here we report on four previously undescribed individuals, including two adults, with de novo truncating variants in TCEAL1, identified through trio exome or genome sequencing, further delineating the phenotype of the TCEAL1-related disorder. Whereas overall we identify similar features compared to the original report, we also highlight features in our adult individuals including hyperphagia, obesity, and endocrine abnormalities including hyperinsulinemia, hyperandrogenemia, and polycystic ovarian syndrome. X chromosome inactivation and RNA-seq studies further provide functional insights in the molecular mechanisms. Together this report expands the phenotypic and molecular spectrum of the TCEAL1-related disorder which will be useful for counseling of newly identified individuals and their families.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Feminino , Humanos , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Transtorno Autístico/genética , Sequência de Bases , Fenótipo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
9.
Life Sci Alliance ; 7(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38182161

RESUMO

Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.


Assuntos
Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Humanos , Proliferação de Células , Biologia Computacional , Deficiência Intelectual/genética , Neurogênese , Deficiência Intelectual Ligada ao Cromossomo X/genética
10.
medRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37503210

RESUMO

Dysmorphologists sometimes encounter challenges in recognizing disorders due to phenotypic variability influenced by factors such as age and ethnicity. Moreover, the performance of Next Generation Phenotyping Tools such as GestaltMatcher is dependent on the diversity of the training set. Therefore, we developed GestaltMatcher Database (GMDB) - a global reference for the phenotypic variability of rare diseases that complies with the FAIR-principles. We curated dysmorphic patient images and metadata from 2,224 publications, transforming GMDB into an online dynamic case report journal. To encourage clinicians worldwide to contribute, each case can receive a Digital Object Identifier (DOI), making it a citable micro-publication. This resulted in a collection of 2,312 unpublished images, partly with longitudinal data. We have compiled a collection of 10,189 frontal images from 7,695 patients representing 683 disorders. The web interface enables gene- and phenotype-centered queries for registered users (https://db.gestaltmatcher.org/). Despite the predominant European ancestry of most patients (59%), our global collaborations have facilitated the inclusion of data from frequently underrepresented ethnicities, with 17% Asian, 4% African, and 6% with other ethnic backgrounds. The analysis has revealed a significant enhancement in GestaltMatcher performance across all ethnic groups, incorporating non-European ethnicities, showcasing a remarkable increase in Top-1-Accuracy by 31.56% and Top-5-Accuracy by 12.64%. Importantly, this improvement was achieved without altering the performance metrics for European patients. GMDB addresses dysmorphology challenges by representing phenotypic variability and including underrepresented groups, enhancing global diagnostic rates and serving as a vital clinician reference database.

11.
Am J Hum Genet ; 110(11): 1938-1949, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37865086

RESUMO

Fanconi anemia (FA) is a clinically variable and genetically heterogeneous cancer-predisposing disorder representing the most common bone marrow failure syndrome. It is caused by inactivating predominantly biallelic mutations involving >20 genes encoding proteins with roles in the FA/BRCA DNA repair pathway. Molecular diagnosis of FA is challenging due to the wide spectrum of the contributing gene mutations and structural rearrangements. The assessment of chromosomal fragility after exposure to DNA cross-linking agents is generally required to definitively confirm diagnosis. We assessed peripheral blood genome-wide DNA methylation (DNAm) profiles in 25 subjects with molecularly confirmed clinical diagnosis of FA (FANCA complementation group) using Illumina's Infinium EPIC array. We identified 82 differentially methylated CpG sites that allow to distinguish subjects with FA from healthy individuals and subjects with other genetic disorders, defining an FA-specific DNAm signature. The episignature was validated using a second cohort of subjects with FA involving different complementation groups, documenting broader genetic sensitivity and demonstrating its specificity using the EpiSign Knowledge Database. The episignature properly classified DNA samples obtained from bone marrow aspirates, demonstrating robustness. Using the selected probes, we trained a machine-learning model able to classify EPIC DNAm profiles in molecularly unsolved cases. Finally, we show that the generated episignature includes CpG sites that do not undergo functional selective pressure, allowing diagnosis of FA in individuals with reverted phenotype due to gene conversion. These findings provide a tool to accelerate diagnostic testing in FA and broaden the clinical utility of DNAm profiling in the diagnostic setting.


Assuntos
Anemia de Fanconi , Humanos , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Metilação de DNA/genética , Proteínas/genética , DNA/metabolismo
13.
Epilepsia ; 64(12): 3143-3154, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750451

RESUMO

Many patients with epilepsy undergo exome or genome sequencing as part of a diagnostic workup; however, many remain genetically unsolved. There are various factors that account for negative results in exome/genome sequencing for patients with epilepsy: (1) the underlying cause is not genetic; (2) there is a complex polygenic explanation; (3) the illness is monogenic but the causative gene remains to be linked to a human disorder; (4) family segregation with reduced penetrance; (5) somatic mosaicism or the complexity of, for example, a structural rearrangement; or (6) limited knowledge or diagnostic tools that hinder the proper classification of a variant, resulting in its designation as a variant of unknown significance. The objective of this review is to outline some of the diagnostic options that lie beyond the exome/genome, and that might become clinically relevant within the foreseeable future. These options include: (1) re-analysis of older exome/genome data as knowledge increases or symptoms change; (2) looking for somatic mosaicism or long-read sequencing to detect low-complexity repeat variants or specific structural variants missed by traditional exome/genome sequencing; (3) exploration of the non-coding genome including disruption of topologically associated domains, long range non-coding RNA, or other regulatory elements; and finally (4) transcriptomics, DNA methylation signatures, and metabolomics as complementary diagnostic methods that may be used in the assessment of variants of unknown significance. Some of these tools are currently not integrated into standard diagnostic workup. However, it is reasonable to expect that they will become increasingly available and improve current diagnostic capabilities, thereby enabling precision diagnosis in patients who are currently undiagnosed.


Assuntos
Epilepsia , Variação Genética , Humanos , Variação Genética/genética , Epilepsia/diagnóstico , Epilepsia/genética , Exoma , Sequenciamento do Exoma , Mapeamento Cromossômico
15.
Kidney Int ; 104(5): 995-1007, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598857

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Humanos , Recém-Nascido , Camundongos , Proteínas de Transporte/metabolismo , Cílios/patologia , Rim/metabolismo , Mutação , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Doenças Renais Policísticas/genética , Rim Policístico Autossômico Dominante/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina/genética , Serina/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
16.
Front Neurosci ; 17: 1219262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502687

RESUMO

Introduction: Phenotypic spectrum of SLC6A1-related neurodevelopmental disorders (SLC6A1-NDD) includes intellectual disability (ID), autistic spectrum disorders (ASD), epilepsy, developmental delay, beginning from early infancy or after seizure onset, and other neurological features such as hypotonia and movement disorders. Data on familial phenotypic heterogeneity have been rarely reported, thus in our study we aimed to investigate intrafamilial phenotypic variability in families with SLC6A1 variants. Methods: We collected clinical, laboratory and genetic data on 39 individuals, including 17 probands, belonging to 13 families harboring inherited variants of SLC6A1. Data were collected through an international network of Epilepsy and Genetic Centers. Results: Main clinical findings in the whole cohort of 39 subjects were: (a) epilepsy, mainly presenting with generalized seizures, reported in 71% of probands and 36% of siblings or first/second-degree relatives. Within a family, the same epilepsy type (generalized or focal) was observed; (b) ID reported in 100% and in 13% of probands and siblings or first/second-degree relatives, respectively; (c) learning disabilities detected in 28% of the SLC6A1 carriers, all of them were relatives of a proband; (d) around 51% of the whole cohort presented with psychiatric symptoms or behavioral disorders, including 82% of the probands. Out of the 19 patients with psychiatric symptoms, ASD were diagnosed in 40% of them; (e) neurological findings (primarily tremor and speech difficulties) were observed 38.5% of the whole cohort, including 10 probands. Our families harbored 12 different SLC6A1 variants, one was a frameshift, two stop-gain, while the remaining were missense. No genotype-phenotype associations were identified. Discussion: Our study showed that first-or second-degree relatives presented with a less severe phenotype, featuring mainly mild intellectual and/or learning disabilities, at variance with the probands who suffered from moderate to severe ID, generalized, sometimes intractable, epileptic seizures, behavioral and psychiatric disorders. These findings may suggest that a proportion of individuals with mild SLC6A1-NDD might be missed, in particular those with an older age where genetic testing is not performed. Further studies on intrafamilial phenotypic variability are needed to confirm our results and possibly to expand the phenotypic spectrum of these disorders and benefit genetic counseling.

17.
Genet Med ; 25(10): 100927, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422718

RESUMO

PURPOSE: The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A. METHODS: Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed. RESULTS: We studied 9 subjects with congenital malformations, including preauricular tags and hypospadias, growth abnormalities, and developmental delay who had de novo heterozygous PHF5A variants, including 4 loss-of-function (LOF), 3 missense, 1 splice, and 1 start-loss variant. In subject-derived fibroblasts with PHF5A LOF variants, wild-type and variant PHF5A mRNAs had a 1:1 ratio, and PHF5A mRNA levels were normal. Transcriptome sequencing revealed alternative promoter use and downregulated genes involved in cell-cycle regulation. Subject and control fibroblasts had similar amounts of PHF5A with the predicted wild-type molecular weight and of SF3B1-3 and SF3B6. SF3B complex formation was unaffected in 2 subject cell lines. CONCLUSION: Our data suggest the existence of feedback mechanisms in fibroblasts with PHF5A LOF variants to maintain normal levels of SF3B components. These compensatory mechanisms in subject fibroblasts with PHF5A or SF3B4 LOF variants suggest disturbed autoregulation of mutated splicing factor genes in specific cell types, that is, neural crest cells, during embryonic development rather than haploinsufficiency as pathomechanism.


Assuntos
Anormalidades Craniofaciais , Hipospadia , Masculino , Humanos , Hipospadia/genética , Fatores de Processamento de RNA/genética , Splicing de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transativadores/genética , Proteínas de Ligação a RNA/genética
18.
Ann Neurol ; 92(2): 304-321, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35471564

RESUMO

OBJECTIVE: Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683). METHODS: Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterization were performed. RESULTS: A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described (NM 001776.6): c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs*18), c.640del; p.(Gly216Glufs*75), c.185 T > G; p.(Leu62*), c.1531 T > C; p.(*511Glnext*100), c.967C > T; p.(Gln323*), c.414-2_414-1del, and c.146 A > G; p.(Tyr49Cys) including 4 recurrent variants c.1109 T > A; p.(Leu370*), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include childhood onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrate ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION: The ENTPD1 locus trait consists of childhood disease onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities, with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1 (1) expands previously described features of ENTPD1-related neurological disease, (2) highlights the importance of genotype-driven deep phenotyping, (3) documents the need for global collaborative efforts to characterize rare autosomal recessive disease traits, and (4) provides insights into disease trait neurobiology. ANN NEUROL 2022;92:304-321.


Assuntos
Apirase , Deficiência Intelectual , Paraplegia Espástica Hereditária , Substância Branca , Apirase/genética , Disartria , Humanos , Deficiência Intelectual/genética , Mutação/genética , Paraplegia/genética , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/genética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
19.
Cell Rep ; 38(11): 110517, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294868

RESUMO

Individuals with autism spectrum disorder (ASD) exhibit an increased burden of de novo mutations (DNMs) in a broadening range of genes. While these studies have implicated hundreds of genes in ASD pathogenesis, which DNMs cause functional consequences in vivo remains unclear. We functionally test the effects of ASD missense DNMs using Drosophila through "humanization" rescue and overexpression-based strategies. We examine 79 ASD variants in 74 genes identified in the Simons Simplex Collection and find 38% of them to cause functional alterations. Moreover, we identify GLRA2 as the cause of a spectrum of neurodevelopmental phenotypes beyond ASD in 13 previously undiagnosed subjects. Functional characterization of variants in ASD candidate genes points to conserved neurobiological mechanisms and facilitates gene discovery for rare neurodevelopmental diseases.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Drosophila , Transtornos do Neurodesenvolvimento , Receptores de Glicina , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno Autístico/genética , Drosophila/genética , Predisposição Genética para Doença , Humanos , Transtornos do Neurodesenvolvimento/genética , Receptores de Glicina/genética
20.
Genet Med ; 24(6): 1283-1296, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35346573

RESUMO

PURPOSE: Common diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed. METHODS: We characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome. RESULTS: Computational facial and Human Phenotype Ontology-based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted. CONCLUSION: Our results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease.


Assuntos
DNA Helicases , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Transtornos do Neurodesenvolvimento , DNA Helicases/genética , Heterozigoto , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA