Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 15(35): 14680, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37622397

RESUMO

Correction for 'In situ observation of the on-surface thermal dehydrogenation of n-octane on Pt(111)' by Daniel Arribas et al., Nanoscale, 2023, https://doi.org/10.1039/d3nr02564k.

2.
Nanoscale ; 15(35): 14458-14467, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37458500

RESUMO

The catalytic dehydrogenation of alkanes constitutes a key step for the industrial conversion of these inert sp3-bonded carbon chains into other valuable unsaturated chemicals. To this end, platinum-based materials are among the most widely used catalysts. In this work, we characterize the thermal dehydrogenation of n-octane (n-C8H18) on Pt(111) under ultra-high vacuum using synchrotron-radiation X-ray photoelectron spectroscopy, temperature-programmed desorption and scanning tunneling microscopy, combined with ab initio calculations. At low activation temperatures, two different dehydrogenation stages are observed. At 330 K, n-C8H18 effectively undergoes a 100% regioselective single C-H bond cleavage at one methyl end. At 600 K, the chemisorbed molecules undergo a double dehydrogenation, yielding double bonds in their carbon skeletons. Diffusion of the dehydrogenated species leads to the formation of carbon molecular clusters, which represents the first step towards poisoning of the catalyst. Our results reveal the chemical mechanisms behind the first stages of alkane dehydrogenation on a platinum model surface at the atomic scale, paving the way for designing more efficient dehydrogenation catalysts.

3.
Commun Chem ; 6(1): 61, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012362

RESUMO

Size-selected iron oxide nanoclusters are outstanding candidates for technological-oriented applications due to their high efficiency-to-cost ratio. However, despite many theoretical studies, experimental works on their oxidation mechanism are still limited to gas-phase clusters. Herein we investigate the oxidation of graphene-supported size-selected Fen clusters by means of high-resolution X-ray Photoelectron Spectroscopy. We show a dependency of the core electron Fe 2p3/2 binding energy of metallic and oxidized clusters on the cluster size. Binding energies are also linked to chemical reactivity through the asymmetry parameter which is related to electron density of states at the Fermi energy. Upon oxidation, iron atoms in clusters reach the oxidation state Fe(II) and the absence of other oxidation states indicates a Fe-to-O ratio close to 1:1, in agreement with previous theoretical calculations and gas-phase experiments. Such knowledge can provide a basis for a better understanding of the behavior of iron oxide nanoclusters as supported catalysts.

4.
ACS Nano ; 16(12): 20902-20914, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36459668

RESUMO

Organic-inorganic (O-I) nanomaterials are versatile platforms for an incredible high number of applications, ranging from heterogeneous catalysis to molecular sensing, cell targeting, imaging, and cancer diagnosis and therapy, just to name a few. Much of their potential stems from the unique control of organic environments around inorganic sites within a single O-I nanomaterial, which allows for new properties that were inaccessible using purely organic or inorganic materials. Structural and mechanistic characterization plays a key role in understanding and rationally designing such hybrid nanoconstructs. Here, we introduce a general methodology to identify and classify local (supra)molecular environments in an archetypal class of O-I nanomaterials, i.e., self-assembled monolayer-protected gold nanoparticles (SAM-AuNPs). By using an atomistic machine-learning guided workflow based on the Smooth Overlap of Atomic Positions (SOAP) descriptor, we analyze a collection of chemically different SAM-AuNPs and detect and compare local environments in a way that is agnostic and automated, i.e., with no need of a priori information and minimal user intervention. In addition, the computational results coupled with experimental electron spin resonance measurements prove that is possible to have more than one local environment inside SAMs, being the thickness of the organic shell and solvation primary factors in the determining number and nature of multiple coexisting environments. These indications are extended to complex mixed hydrophilic-hydrophobic SAMs. This work demonstrates that it is possible to spot and compare local molecular environments in SAM-AuNPs exploiting atomistic machine-learning approaches, establishes ground rules to control them, and holds the potential for the rational design of O-I nanomaterials instructed from data.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Interações Hidrofóbicas e Hidrofílicas
5.
BMC Pediatr ; 22(1): 532, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36071395

RESUMO

BACKGROUND: Defaulting is the most frequent cause of Community Management of Acute Malnutrition (CMAM) program failure. Lack of community sensitization, financial/opportunity costs and low quality of care have been recognized as the main driving factors for default in malnutrition programs. The present study aimed to evaluate if a logistic reorganization (generic outpatient department, OPD vs dedicated clinic, NRU) and a change in management (dedicated vs non dedicated staff) of the follow-up of children between 6 and 24 months of age with acute malnutrition, can reduce the default, relapse and readmission rate and increase the recovery rate. METHODS: Retrospective observational study on the impact of quality improvement interventions on rehabilitation outcomes of children (6-24 months) with acute malnutrition, admitted at the Catholic Mission Hospital of Chiulo (Angola) from January 2018 to February 2020. Main outcome measures were recovery rate, the default rate, the relapse rate, and the readmission rate. RESULTS: The intervention was associated with a decrease in the default rate from 89 to 76% (p = 0.02). Recovery rate was 69% in OPD and 88% in NRU (p = 0.25). Relapse rate was nil. CONCLUSIONS: The present study supports the hypothesis that an improvement in quality of care can positively influence the rehabilitation outcomes of malnourished children. Further studies are needed to identify children at risk of low adherence to follow-up visits to increase the effectiveness of rehabilitation programs.


Assuntos
Desnutrição , Melhoria de Qualidade , Angola , Criança , Doença Crônica , Humanos , Recidiva , Estudos Retrospectivos , Resultado do Tratamento
6.
Nanoscale ; 13(44): 18789-18798, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34751294

RESUMO

In this work we prove that ordered single-layer MoS2 can be grown epitaxially on Ag(110), despite the different crystalline geometry of adsorbate and substrate. A comprehensive investigation of electronic and structural features of this interface is carried out by combining several techniques. Photoelectron diffraction experiments show that only two mirror crystalline domains coexist in equal amount in the grown layer. Angle-resolved valence band photoelectron spectroscopy shows that MoS2 undergoes a semiconductor-to-metal transition. Low-energy electron diffraction and scanning-tunneling microscopy experiments reveal the formation of a commensurate moiré superlattice at the interface, which implies an anisotropic uniaxial strain of the MoS2 crystalline lattice of ca. 3% in the [11̄0] direction of the Ag(110) surface. These outcomes suggest that the epitaxial growth on anisotropic substrates might be an effective and scalable method to generate a controlled and homogeneous strain in MoS2 and possibly other transition-metal dichalcogenides.

7.
Front Pediatr ; 9: 692652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211946

RESUMO

Objective: This study aims to evaluate safety and success rates of lumbar puncture (LP) and to identify factors associated with adverse events or failure of LP in infants. Methods: This two-center prospective observational study investigated infants younger than 90 days of age who underwent LP. Need for resuscitation oxygen desaturation (SpO2 < 90%), bradycardia and intraventricular hemorrhage were considered adverse events. LP failed if cerebrospinal spinal fluid was not collected or had traces of blood. Logistic regression analysis was used to evaluate whether corrected gestational age (GA), body weight at LP, position, and any respiratory support during LP affected SpO2 desaturation or failure of LP. Results: Among 204 LPs, 134 were performed in full-term and 70 in pre-term born infants. SpO2 desaturations occurred during 45 (22.4%) LPs. At multivariate analysis, lower GA at LP (p < 0.001), non-invasive respiratory support (p 0.007) and mechanical ventilation (p 0.004) were associated with SpO2 desaturations. Transient, self-resolving bradycardia occurred in 7 (3.4%) infants. Two infants had intraventricular hemorrhage detected within 72 h of LP. No further adverse events were registered. Failure of LP occurred in 38.2% of cases and was not associated with any of the factors evaluated. Conclusions: LP was safe in most infants. Body weight or GA at LP did not affect LP failure. These data are useful to clinicians, providing information on the safety of the procedure.

8.
J Phys Chem C Nanomater Interfaces ; 125(17): 9556-9563, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34276855

RESUMO

The possibility of depositing precisely mass-selected Ag clusters (Ag1, Ag3, and Ag7) on Ru(0001) was instrumental in determining the importance of the in-plane coordination number (CN) and allowed us to establish a linear dependence of the Ag 3d5/2 core-level shift on CN. The fast cluster surface diffusion at room temperature, caused by the low interaction between silver and ruthenium, leads to the formation of islands with a low degree of ordering, as evidenced by the high density of low-coordinated atomic configurations, in particular CN = 4 and 5. On the contrary, islands formed upon Ag7 deposition show a higher density of atoms with CN = 6, thus indicating the formation of islands with a close-packed atomic arrangement. This combined experimental and theoretical approach, when applied to clusters of different elements, offers the perspective to reveal nonequivalent local configurations in two-dimensional (2D) materials grown using different building blocks, with potential implications in understanding electronic and reactivity properties at the atomic level.

10.
Chem Sci ; 12(1): 170-178, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34168740

RESUMO

In this work, we characterize the adsorption of pentacene molecules on Ir(111) and their behaviour as a function of temperature. While room temperature adsorption preserves the molecular structure of the five benzene rings and the bonds between carbon and hydrogen atoms, we find that complete C-H molecular break up takes place between 450 K and 550 K, eventually resulting in the formation of small graphene islands at temperatures larger than 800 K. Most importantly a reversible temperature-induced dehydrogenation process is found when the system is annealed/cooled in a hydrogen atmosphere with a pressure higher than 5 × 10-7 mbar. This novel process could have interesting implications for the synthesis of larger acenes and for the manipulation of graphene nanoribbon properties.

11.
ACS Nano ; 13(10): 12230-12241, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31589408

RESUMO

Graphene has been proposed to be either fully transparent to van der Waals interactions to the extent of allowing switching between hydrophobic and hydrophilic behavior, or partially transparent (translucent), yet there has been considerable debate on this topic, which is still ongoing. In a combined experimental and theoretical study we investigate the effects of different metal substrates on the adsorption energy of atomic (argon) and molecular (carbon monoxide) adsorbates on high-quality epitaxial graphene. We demonstrate that while the adsorption energy is certainly affected by the chemical composition of the supporting substrate and by the corrugation of the carbon lattice, the van der Waals interactions between adsorbates and the metal surfaces are partially screened by graphene. Our results indicate that the concept of graphene translucency, already introduced in the case of water droplets, is found to hold more generally also in the case of single polar molecules and atoms, which are apolar.

12.
J Chem Phys ; 150(5): 054704, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30736689

RESUMO

The assembling of metal phthalocyanines on the rippled moiré superlattice of graphene/Ir(111) intercalated with one Co layer is driven by the site-dependent polarization field induced by the incommensurate graphene-Co interface. We have performed an X-ray absorption and photoemission study to unveil the role of the metallic centers and of the organic ligands in the molecule-Co interaction process mediated by graphene. Notably, we consider different electronic molecular orbitals, i.e. phthalocyanines with Cu and Mn metallic ions. The spectroscopic response suggests almost unaltered CuPc molecular states upon adsorption, and the rippled graphene carpet decouples completely the electronic interaction between the molecules and the Co layer, while a slight hybridization is present for MnPcs. MnPc molecules, trapped in the valleys of the moiré graphene superlattice, slightly intermix, through the orbitals protruding out of the molecular plane, with the underlying Co, while the organic ligands are almost unaltered. Graphene acts as an interlayer and mediates the interaction between metal phthalocyanines and the metallic substrate, preventing a strong chemical intermixing and enabling the assembly of almost unaltered molecules, preserving their electronic/magnetic state.

13.
J Matern Fetal Neonatal Med ; 32(23): 4029-4035, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29792059

RESUMO

Meningitis occurs frequently in neonates and can lead to a number of acute, severe complications and long-term disabilities. An early diagnosis of neonatal meningitis is essential to reduce mortality and to improve outcomes. Initial clinical signs of meningitis are often subtle and frequently overlap with those of sepsis, and current haematologic tests do not distinguish sepsis from meningitis. Thus, lumbar puncture (LP) remains the gold standard for the diagnosis of meningitis in infants, and this procedure is recommended in clinical guidelines. Nevertheless, in clinical practice, LP is frequently deferred or omitted due to concerns regarding hypothetical adverse events or limited experience of the performer. Future studies should assess whether a combination of clinical findings and select haematologic tests at disease onset can identify those neonates with the highest risk of meningitis who should undergo LP. Furthermore, clinicians should be convinced that the actual benefits of an early diagnosis of meningitis far outweigh the hypothetical risks associated with LP.


Assuntos
Técnicas e Procedimentos Diagnósticos , Doenças do Recém-Nascido/diagnóstico , Meningite/diagnóstico , Punção Espinal , Fatores Etários , Técnicas e Procedimentos Diagnósticos/normas , Feminino , Humanos , Lactente , Recém-Nascido , Doenças do Recém-Nascido/líquido cefalorraquidiano , Região Lombossacral , Masculino , Meningite/líquido cefalorraquidiano , Meningite/congênito , Triagem Neonatal/efeitos adversos , Triagem Neonatal/métodos , Triagem Neonatal/normas , Valor Preditivo dos Testes , Gravidez , Sepse/líquido cefalorraquidiano , Sepse/congênito , Sepse/diagnóstico , Punção Espinal/efeitos adversos , Punção Espinal/métodos
14.
Nanoscale ; 10(16): 7396-7406, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29616254

RESUMO

The growth of graphene by molecular beam epitaxy from an elemental carbon precursor is a very promising technique to overcome some of the main limitations of the chemical vapour deposition approach, such as the possibility to synthesize graphene directly on a wide variety of surfaces including semiconductors and insulators. However, while the individual steps of the chemical vapour deposition growth process have been extensively studied for several surfaces, such knowledge is still missing for the case of molecular beam epitaxy, even though it is a key ingredient to optimise its performance and effectiveness. In this work, we have performed a combined experimental and theoretical study comparing the growth rate of the molecular beam epitaxy and chemical vapour deposition processes on the prototypical Ir (111) surface. In particular, by employing high-resolution fast X-ray photoelectron spectroscopy, we were able to follow the growth of both single- and multi-layer graphene in real time, and to identify the spectroscopic fingerprints of the different C layers. Our experiments, supported by density functional theory calculations, highlight the role of the interaction between different C precursor species and the growing graphene flakes on the growth rate of graphene. These results provide an overview of the main differences between chemical vapour deposition and molecular beam epitaxy growth and thus on the main parameters which can be tuned to optimise growth conditions.

15.
Nanoscale ; 10(15): 7085-7094, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29616265

RESUMO

The adsorption of Si atoms on a metal surface might proceed through complex surface processes, whose rate is determined differently by factors such as temperature, Si coverage, and metal cohesive energy. Among other transition metals, iridium is a special case since the Ir(111) surface was reported first, in addition to Ag(111), as being suitable for the epitaxy of silicene monolayers. In this study we followed the adsorption of Si on the Ir(111) surface via high resolution core level photoelectron spectroscopy, starting from the clean metal surface up to a coverage exceeding one monolayer, in a temperature range between 300 and 670 K. Density functional theory calculations were carried out in order to evaluate the stability of the different Si adsorption configurations as a function of the coverage. Results indicate that, at low coverage, the Si adatoms tend to occupy the hollow Ir sites, although a small fraction of them penetrates the first Ir layer. Si penetration of the Ir surface can take place if the energy gained upon Si adsorption is used to displace the Ir surface atoms, rather then being dissipated differently. At a Si coverage of ∼1 monolayer, the Ir 4f spectrum indicates that not only the metal surface but also the layers underneath are perturbed. Our results point out that the Si/Ir(111) interface is unstable towards Si-Ir intermixing, in agreement with the silicide phase formation reported in the literature for the reverted interface.

16.
Phys Chem Chem Phys ; 18(40): 27897-27909, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27711652

RESUMO

The complete mechanism behind the thermal decomposition of ethylene (C2H4) on Ir(111), which is the first step of graphene growth, is established for the first time employing a combination of experimental and theoretical methods. High-resolution X-ray photoelectron spectroscopy was employed, along with calculations of core level binding-energies, to identify the surface species and their evolution as the surface temperature is increased. To understand the experimental results, we have developed a reaction sequence between the various CnHm species, from ethylene to C monomers and dimers, based on ab initio density functional calculations of all the energy barriers and the Arrhenius prefactors for the most important processes. The resulting temperature evolution of all species obtained from the simulated kinetics of ethylene decomposition agrees with photoemission measurements. The molecular dissociation mechanism begins with the dehydrogenation of ethylene to vinylidene (CH2C), which is then converted to acetylene (CHCH) by the removal and addition of an H atom. The C-C bond is then broken to form methylidyne (CH), and in the same temperature range a small amount of ethylidyne (CH3C) is produced. Finally methylidyne dehydrogenates to produce C monomers that are available for the early stage nucleation of the graphene islands.

17.
J Am Chem Soc ; 138(10): 3395-402, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26829531

RESUMO

The atomistic understanding of the dissociation mechanisms for large molecules adsorbed on surfaces is still a challenge in heterogeneous catalysis. This is especially true for polycyclic aromatic hydrocarbons, which represent an important class of organic compounds used to produce novel graphene-based architectures. Here, we show that coronene molecules adsorbed on Ir(111) undergo major conformational changes during dissociation. They first tilt upward with respect to the surface, still keeping their planar configuration, and subsequently experience a rotation, which changes the molecular axis orientation. Upon lifting, the internal C-C strain is initially relieved; as the dehydrogenation proceeds, the molecules experience a progressive increase in the average interatomic distance and gradually settle to form dome-shaped nanographene flakes. Our results provide important insight into the complex mechanism of molecular breakup, which could have implications in the synthesis of new carbon-based nanostructured materials.

18.
Nanoscale ; 7(29): 12650-8, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26148485

RESUMO

We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal.

19.
ACS Nano ; 8(12): 12063-70, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25389799

RESUMO

We investigate the structure of epitaxially grown hexagonal boron nitride (h-BN) on Ir(111) by chemical vapor deposition of borazine. Using photoelectron diffraction spectroscopy, we unambiguously show that a single-domain h-BN monolayer can be synthesized by a cyclic dose of high-purity borazine onto the metal substrate at room temperature followed by annealing at T=1270 K, this method giving rise to a diffraction pattern with 3-fold symmetry. In contrast, high-temperature borazine deposition (T=1070 K) results in a h-BN monolayer formed by domains with opposite orientation and characterized by a 6-fold symmetric diffraction pattern. We identify the thermal energy and the binding energy difference between fcc and hcp seeds as key parameters in controlling the alignment of the growing h-BN clusters during the first stage of the growth, and we further propose structural models for the h-BN monolayer on the Ir(111) surface.

20.
Nat Commun ; 5: 5062, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25262792

RESUMO

The production of high-quality graphene-oxide interfaces is normally achieved by graphene growth via chemical vapour deposition on a metallic surface, followed by transfer of the C layer onto the oxide, by atomic layer and physical vapour deposition of the oxide on graphene or by carbon deposition on top of oxide surfaces. These methods, however, come with a series of issues: they are complex, costly and can easily result in damage to the carbon network, with detrimental effects on the carrier mobility. Here we show that the growth of a graphene layer on a bimetallic Ni3Al alloy and its subsequent exposure to oxygen at 520 K result in the formation of a 1.5 nm thick alumina nanosheet underneath graphene. This new, simple and low-cost strategy based on the use of alloys opens a promising route to the direct synthesis of a wide range of interfaces formed by graphene and high-κ dielectrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA