Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 35(19): e2209708, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36812299

RESUMO

A unique class of advanced materials-quantum composites based on polymers with fillers composed of a van der Waals quantum material that reveals multiple charge-density-wave quantum condensate phases-is demonstrated. Materials that exhibit quantum phenomena are typically crystalline, pure, and have few defects because disorder destroys the coherence of the electrons and phonons, leading to collapse of the quantum states. The macroscopic charge-density-wave phases of filler particles after multiple composite processing steps are successfully preserved in this work. The prepared composites display strong charge-density-wave phenomena even above room temperature. The dielectric constant experiences more than two orders of magnitude enhancement while the material maintains its electrically insulating properties, opening a venue for advanced applications in energy storage and electronics. The results present a conceptually different approach for engineering the properties of materials, extending the application domain for van der Waals materials.

2.
ACS Nano ; 16(4): 6325-6333, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35324143

RESUMO

We report on the preparation of inks containing fillers derived from quasi-two-dimensional charge-density-wave materials, their application for inkjet printing, and the evaluation of their electronic properties in printed thin-film form. The inks were prepared by liquid-phase exfoliation of CVT-grown 1T-TaS2 crystals to produce fillers with nm-scale thickness and µm-scale lateral dimensions. Exfoliated 1T-TaS2 was dispersed in a mixture of isopropyl alcohol and ethylene glycol to allow fine-tuning of filler particles thermophysical properties for inkjet printing. The temperature-dependent electrical and current fluctuation measurements of printed thin films demonstrated that the charge-density-wave properties of 1T-TaS2 are preserved after processing. The functionality of the printed thin-film devices can be defined by the nearly commensurate to the commensurate charge-density-wave phase transition of individual exfoliated 1T-TaS2 filler particles rather than by electron-hopping transport between them. The obtained results are important for the development of printed electronics with diverse functionality achieved by the incorporation of quasi-two-dimensional van der Waals quantum materials.

3.
ACS Appl Mater Interfaces ; 13(44): 53073-53082, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34705408

RESUMO

We report on the investigation of thermal transport in noncured silicone composites with graphene fillers of different lateral dimensions. Graphene fillers are comprised of few-layer graphene flakes with lateral sizes in the range from 400 to 1200 nm and the number of atomic planes from 1 to ∼100. The distribution of the lateral dimensions and thicknesses of graphene fillers has been determined via atomic force microscopy statistics. It was found that in the examined range of the lateral dimensions, the thermal conductivity of the composites increases with increasing size of the graphene fillers. The observed difference in thermal properties can be related to the average gray phonon mean free path in graphene, which has been estimated to be around ∼800 nm at room temperature. The thermal contact resistance of composites with graphene fillers of 1200 nm lateral dimensions was also smaller than that of composites with graphene fillers of 400 nm lateral dimensions. The effects of the filler loading fraction and the filler size on the thermal conductivity of the composites were rationalized within the Kanari model. The obtained results are important for the optimization of graphene fillers for applications in thermal interface materials for heat removal from high-power-density electronics.

4.
ACS Appl Mater Interfaces ; 13(39): 47033-47042, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34553916

RESUMO

We report on the fabrication and characterization of electronic devices printed with inks of quasi-one-dimensional (1D) van der Waals materials. The quasi-1D van der Waals materials are characterized by 1D motifs in their crystal structure, which allow for their exfoliation into bundles of atomic chains. The ink was prepared by the liquid-phase exfoliation of crystals of TiS3 into quasi-1D nanoribbons dispersed in a mixture of ethanol and ethylene glycol. The temperature-dependent electrical measurements indicate that the electron transport in the printed devices is dominated by the electron hopping mechanisms. The low-frequency electronic noise in the printed devices is of 1/fγ-type with γ ∼ 1 near-room temperature (f is the frequency). The abrupt changes in the temperature dependence of the noise spectral density and γ parameter can be indicative of the phase transition in individual TiS3 nanoribbons as well as modifications in the hopping transport regime. The obtained results attest to the potential of quasi-1D van der Waals materials for applications in printed electronics.

5.
ACS Appl Mater Interfaces ; 13(18): 21527-21533, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33929179

RESUMO

We report on the preparation of flexible polymer composite films with aligned metallic fillers composed of atomic chain bundles of quasi-one-dimensional (1D) van der Waals material, tantalum triselenide (TaSe3). The material functionality, embedded at the nanoscale level, is achieved by mimicking the design of an electromagnetic aperture grid antenna. The processed composites employ chemically exfoliated TaSe3 nanowires as the grid building blocks incorporated within the thin film. Filler alignment is achieved using the "blade coating" method. Measurements conducted in the X-band frequency range demonstrate that the electromagnetic transmission through such films can be varied significantly by changing the relative orientations of the quasi-1D fillers and the polarization of the electromagnetic wave. We argue that such polarization-sensitive polymer films with unique quasi-1D metallic fillers are applicable to advanced electromagnetic interference shielding in future communication systems.

6.
Adv Mater ; 33(11): e2007286, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33576041

RESUMO

Polymer composite films containing fillers comprising quasi-1D van der Waals materials, specifically transition metal trichalcogenides with 1D structural motifs that enable their exfoliation into bundles of atomic threads, are reported. These nanostructures are characterized by extremely large aspect ratios of up to ≈106 . The polymer composites with low loadings of quasi-1D TaSe3 fillers (<3 vol%) reveal excellent electromagnetic interference shielding in the X-band GHz and extremely high frequency sub-THz frequency ranges, while remaining DC electrically insulating. The unique electromagnetic shielding characteristics of these films are attributed to effective coupling of the electromagnetic waves to the high-aspect-ratio electrically conductive TaSe3 atomic-thread bundles even when the filler concentration is below the electrical percolation threshold. These novel films are promising for high-frequency communication technologies, which require electromagnetic shielding films that are flexible, lightweight, corrosion resistant, inexpensive, and electrically insulating.

7.
Nanotechnology ; 32(14): 142003, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33049724

RESUMO

We review the current state-of-the-art graphene-enhanced thermal interface materials for the management of heat in the next generation of electronics. Increased integration densities, speed and power of electronic and optoelectronic devices require thermal interface materials with substantially higher thermal conductivity, improved reliability, and lower cost. Graphene has emerged as a promising filler material that can meet the demands of future high-speed and high-powered electronics. This review describes the use of graphene as a filler in curing and non-curing polymer matrices. Special attention is given to strategies for achieving the thermal percolation threshold with its corresponding characteristic increase in the overall thermal conductivity. Many applications require high thermal conductivity of composites, while simultaneously preserving electrical insulation. A hybrid filler approach, using graphene and boron nitride, is presented as a possible technology providing for the independent control of electrical and thermal conduction. The reliability and lifespan performance of thermal interface materials is an important consideration towards the determination of appropriate practical applications. The present review addresses these issues in detail, demonstrating the promise of graphene-enhanced thermal interface materials compared to alternative technologies.

8.
ACS Appl Mater Interfaces ; 12(25): 28635-28644, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32476399

RESUMO

We report on the synthesis of the epoxy-based composites with graphene fillers and test their electromagnetic shielding efficiency by the quasi-optic free-space method in the extremely high-frequency (EHF) band (220-325 GHz). The curing adhesive composites were produced by a scalable technique with a mixture of single-layer and few-layer graphene layers of few-micrometer lateral dimensions. It was found that the electromagnetic transmission, T, is low even at small concentrations of graphene fillers: T<1% at a frequency of 300 GHz for a composite with only ϕ = 1 wt% graphene. The main shielding mechanism in composites with the low graphene loading is absorption. The composites of 1 mm in thickness and a graphene loading of 8 wt% provide an excellent electromagnetic shielding of 70 dB in the sub-terahertz EHF frequency band with negligible energy reflection to the environment. The developed lightweight adhesive composites with graphene fillers can be used as electromagnetic absorbers in the high-frequency microwave radio relays, microwave remote sensors, millimeter wave scanners, and wireless local area networks.

9.
ACS Nano ; 14(2): 2424-2435, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31951116

RESUMO

We report results of investigation of the phonon and thermal properties of the exfoliated films of layered single crystals of antiferromagnetic FePS3 and MnPS3 semiconductors. Raman spectroscopy was conducted using three different excitation lasers with wavelengths of 325 nm (UV), 488 nm (blue), and 633 nm (red). UV-Raman spectroscopy reveals spectral features which are not detectable via visible Raman light scattering. The thermal conductivity of FePS3 and MnPS3 thin films was measured by two different techniques: the steady-state Raman optothermal and transient time-resolved magneto-optical Kerr effect. The Raman optothermal measurements provided the orientation-average thermal conductivity of FePS3 to be 1.35 ± 0.32 W m-1 K-1 at room temperature. The transient measurements revealed that the through-plane and in-plane thermal conductivity of FePS3 are 0.85 ± 0.15 and 2.7 ± 0.3 W m-1 K-1, respectively. The films of MnPS3 have higher thermal conductivity of 1.1 ± 0.2 W m-1 K-1 through-plane and 6.3 ± 1.7 W m-1 K-1 in-plane. The data obtained by the two techniques are in agreement and reveal strong thermal anisotropy of the films and the dominance of phonon contribution to heat conduction. The obtained results are important for the interpretation of electric switching experiments with antiferromagnetic materials as well as for the proposed applications of the antiferromagnetic semiconductors in spintronic devices.

10.
ACS Appl Mater Interfaces ; 10(43): 37555-37565, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30299919

RESUMO

We investigated thermal properties of the epoxy-based composites with the high loading fraction-up to f ≈ 45 vol %-of the randomly oriented electrically conductive graphene fillers and electrically insulating boron nitride fillers. It was found that both types of the composites revealed a distinctive thermal percolation threshold at the loading fraction fT > 20 vol %. The graphene loading required for achieving thermal percolation, fT, was substantially higher than the loading, fE, for electrical percolation. Graphene fillers outperformed boron nitride fillers in the thermal conductivity enhancement. It was established that thermal transport in composites with high filler loadings, f ≥ fT, is dominated by heat conduction via the network of percolating fillers. Unexpectedly, we determined that the thermal transport properties of the high loading composites were influenced strongly by the cross-plane thermal conductivity of the quasi-two-dimensional fillers. The obtained results shed light on the debated mechanism of the thermal percolation, and facilitate the development of the next generation of the efficient thermal interface materials for electronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA