Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cells ; 13(19)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39404400

RESUMO

Vascular access is an indispensable component of haemodialysis therapy for end-stage kidney disease patients. The arteriovenous fistula (AVF) is most common, but importantly, two-year failure rates are greater than fifty percent. AVF failure can occur due to a lack of suitable vascular remodelling, and inappropriate inflammation preventing maturation, or alternatively neointimal hyperplasia and vascular stenosis preventing long-term use. A comprehensive mechanistic understanding of these processes is still lacking, but recent studies highlight an essential role for inflammation from uraemia and the AVF itself. Inflammation affects each cell in the cascade of AVF failure, the endothelium, the infiltrating immune cells, and the vascular smooth muscle cells. This review examines the role of inflammation in each cell step by step and the influence on AVF failure. Inflammation resulting in AVF failure occurs initially via changes in endothelial cell activation, permeability, and vasoprotective chemokine secretion. Resultingly, immune cells can extravasate into the subendothelial space to release inflammatory cytokines and cause other deleterious changes to the microenvironment. Finally, all these changes modify vascular smooth muscle cell function, resulting in excessive and unchecked hyperplasia and proliferation, eventually leading to stenosis and the failure of the AVF. Finally, the emerging therapeutic options based off these findings are discussed, including mesenchymal stem cells, small-molecule inhibitors, and far-infrared therapies. Recent years have clearly demonstrated a vital role for inflammation in deciding the fate of the AVF, and future works must be centred on this to develop therapies for a hitherto unacceptably underserved patient population.


Assuntos
Fístula Arteriovenosa , Inflamação , Diálise Renal , Humanos , Diálise Renal/efeitos adversos , Inflamação/patologia , Fístula Arteriovenosa/patologia , Fístula Arteriovenosa/terapia , Animais , Rim/patologia , Falência Renal Crônica/terapia , Falência Renal Crônica/patologia , Derivação Arteriovenosa Cirúrgica/efeitos adversos
2.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298145

RESUMO

Hypertension affects over a billion adults worldwide and is a major risk factor for cardiovascular disease. Studies have reported that the microbiota and its metabolites regulate hypertension pathophysiology. Recently, tryptophan metabolites have been identified to contribute to and inhibit the progression of metabolic disorders and cardiovascular diseases, including hypertension. Indole propionic acid (IPA) is a tryptophan metabolite with reported protective effects in neurodegenerative and cardiovascular diseases; however, its involvement in renal immunomodulation and sodium handling in hypertension is unknown. In the current study, targeted metabolomic analysis revealed decreased serum and fecal IPA levels in mice with L-arginine methyl ester hydrochloride (L-NAME)/high salt diet-induced hypertension (LSHTN) compared to normotensive control mice. Additionally, kidneys from LSHTN mice had increased T helper 17 (Th17) cells and decreased T regulatory (Treg) cells. Dietary IPA supplementation in LSHTN mice for 3 weeks resulted in decreased systolic blood pressure, along with increased total 24 h and fractional sodium excretion. Kidney immunophenotyping demonstrated decreased Th17 cells and a trend toward increased Treg cells in IPA-supplemented LSHTN mice. In vitro, naïve T cells from control mice were skewed into Th17 or Treg cells. The presence of IPA decreased Th17 cells and increased Treg cells after 3 days. These results identify a direct role for IPA in attenuating renal Th17 cells and increasing Treg cells, leading to improved sodium handling and decreased blood pressure. IPA may be a potential metabolite-based therapeutic option for hypertension.


Assuntos
Doenças Cardiovasculares , Hipertensão , Animais , Camundongos , Células Th17/metabolismo , Pressão Sanguínea , Linfócitos T Reguladores/metabolismo , Doenças Cardiovasculares/metabolismo , Triptofano/metabolismo , Hipertensão/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta/metabolismo , Indóis/metabolismo , Sódio/metabolismo
3.
Physiol Rep ; 9(22): e15094, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34806312

RESUMO

Acute kidney injury (AKI) is a major cause of patient mortality and a major risk multiplier for the progression to chronic kidney disease (CKD). The mechanism of the AKI to CKD transition is complex but is likely mediated by the extent and length of the inflammatory response following the initial injury. Lymphatic vessels help to maintain tissue homeostasis through fluid, macromolecule, and immune modulation. Increased lymphatic growth, or lymphangiogenesis, often occurs during inflammation and plays a role in acute and chronic disease processes. What roles renal lymphatics and lymphangiogenesis play in AKI recovery and CKD progression remains largely unknown. To determine if the increased lymphatic density is protective in the response to kidney injury, we utilized a transgenic mouse model with inducible, kidney-specific overexpression of the lymphangiogenic protein vascular endothelial growth factor-D to expand renal lymphatics. "KidVD" mouse kidneys were injured using inducible podocyte apoptosis and proteinuria (POD-ATTAC) or bilateral ischemia reperfusion. In the acute injury phase of both models, KidVD mice demonstrated a similar loss of function measured by serum creatinine and glomerular filtration rate compared to their littermates. While the initial inflammatory response was similar, KidVD mice demonstrated a shift toward more CD4+ and fewer CD8+ T cells in the kidney. Reduced collagen deposition and improved functional recovery over time was also identified in KidVD mice. In KidVD-POD-ATTAC mice, an increased number of podocytes were counted at 28 days post-injury. These data demonstrate that increased lymphatic density prior to injury alters the injury recovery response and affords protection from CKD progression.


Assuntos
Injúria Renal Aguda/metabolismo , Rim/metabolismo , Vasos Linfáticos/metabolismo , Recuperação de Função Fisiológica , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/imunologia , Animais , Apoptose , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Colágeno/metabolismo , Modelos Animais de Doenças , Rim/imunologia , Linfangiogênese/genética , Camundongos , Camundongos Transgênicos , Podócitos , Proteinúria/imunologia , Proteinúria/metabolismo , Traumatismo por Reperfusão/imunologia , Tacrolimo/análogos & derivados , Tacrolimo/toxicidade , Fator D de Crescimento do Endotélio Vascular/genética
4.
Biomolecules ; 11(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34572600

RESUMO

Recent metabolomics studies have identified a wide array of microbial metabolites and metabolite pathways that are significantly altered in hypertension. However, whether these metabolites play an active role in pathogenesis of hypertension or are altered because of this has yet to be determined. In the current study, we hypothesized that metabolite changes common between hypertension models may unify hypertension's pathophysiology with respect to metabolites. We utilized two common mouse models of experimental hypertension: L-arginine methyl ester hydrochloride (L-NAME)/high-salt-diet-induced hypertension (LSHTN) and angiotensin II induced hypertension (AHTN). To identify common metabolites that were altered across both models, we performed untargeted global metabolomics analysis in serum and urine and the resulting data were analyzed using MetaboAnalyst software and compared to control mice. A total of 41 serum metabolites were identified as being significantly altered in any hypertensive model compared to the controls. Of these compounds, 14 were commonly changed in both hypertensive groups, with 4 significantly increased and 10 significantly decreased. In the urine, six metabolites were significantly altered in any hypertensive group with respect to the control; however, none of them were common between the hypertensive groups. These findings demonstrate that a modest, but potentially important, number of serum metabolites are commonly altered between experimental hypertension models. Further studies of the newly identified metabolites from this untargeted metabolomics analysis may lead to a greater understanding of the association between gut dysbiosis and hypertension.


Assuntos
Hipertensão/sangue , Hipertensão/metabolismo , Metaboloma , Metabolômica , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Hipertensão/urina , Masculino , Camundongos Endogâmicos C57BL , Análise de Componente Principal
5.
Acta Physiol (Oxf) ; 232(4): e13656, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33793057

RESUMO

AIM: Fluid and macromolecule transport from the interstitium into and through lymphatic vessels is necessary for tissue homeostasis. While lymphatic capillary structure suggests that passive, paracellular transport would be the predominant route of macromolecule entry, active caveolae-mediated transcellular transport has been identified in lymphatic endothelial cells (LECs) in vitro. Caveolae also mediate a wide array of endothelial cell processes, including nitric oxide regulation. Thus, how does the lack of caveolae impact "lymphatic function"? METHODS: Various aspects of lymphatic transport were measured in mice constitutively lacking caveolin-1 ("CavKO"), the protein required for caveolae formation in endothelial cells, and in mice with a LEC-specific Cav1 gene deletion (Lyve1-Cre x Cav1flox/flox ; "LyCav") and ex vivo in their vessels and cells. RESULTS: In each model, lymphatic architecture was largely unchanged. The lymphatic conductance, or initial tissue uptake, was significantly higher in both CavKO mice and LyCav mice by quantitative microlymphangiography and the permeability to 70 kDa dextran was significantly increased in monolayers of LECs isolated from CavKO mice. Conversely, transport within the lymphatic system to the sentinel node was significantly reduced in anaesthetized CavKO and LyCav mice. Isolated, cannulated collecting vessel studies identified significantly reduced phasic contractility when lymphatic endothelium lacks caveolae. Inhibition of nitric oxide synthase was able to partially restore ex vivo vessel contractility. CONCLUSION: Macromolecule transport across lymphatics is increased with loss of caveolae, yet phasic contractility reduced, resulting in reduced overall lymphatic transport function. These studies identify lymphatic caveolar biology as a key regulator of active lymphatic transport functions.


Assuntos
Cavéolas , Vasos Linfáticos , Animais , Cavéolas/metabolismo , Caveolina 1 , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Camundongos , Óxido Nítrico Sintase/metabolismo
6.
Pharmaceutics ; 14(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35056980

RESUMO

Chronic interstitial inflammation and renal infiltration of activated immune cells play an integral role in hypertension. Lymphatics regulate inflammation through clearance of immune cells and excess interstitial fluid. Previously, we demonstrated increasing renal lymphangiogenesis prevents hypertension in mice. We hypothesized that targeted nanoparticle delivery of vascular endothelial growth factor-C (VEGF-C) to the kidney would induce renal lymphangiogenesis, lowering blood pressure in hypertensive mice. A kidney-targeting nanoparticle was loaded with a VEGF receptor-3-specific form of VEGF-C and injected into mice with angiotensin II-induced hypertension or LNAME-induced hypertension every 3 days. Nanoparticle-treated mice exhibited increased renal lymphatic vessel density and width compared to hypertensive mice injected with VEGF-C alone. Nanoparticle-treated mice exhibited decreased systolic blood pressure, decreased pro-inflammatory renal immune cells, and increased urinary fractional excretion of sodium. Our findings demonstrate that pharmacologically expanding renal lymphatics decreases blood pressure and is associated with favorable alterations in renal immune cells and increased sodium excretion.

7.
J Hypertens ; 38(5): 874-885, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31913221

RESUMO

OBJECTIVE: Hypertension is associated with renal immune cell accumulation and sodium retention. Lymphatic vessels provide a route for immune cell trafficking and fluid clearance. Whether specifically increasing renal lymphatic density can treat established hypertension, and whether renal lymphatics are involved in mechanisms of blood pressure regulation remain undetermined. Here, we tested the hypothesis that augmenting renal lymphatic density can attenuate blood pressure in established hypertension. METHODS: Transgenic mice with inducible kidney-specific overexpression of VEGF-D ('KidVD+' mice) and KidVD- controls were administered a nitric oxide synthase inhibitor, L-NAME, for 4 weeks, with doxycycline administration beginning at the end of week 1. To identify mechanisms by which renal lymphatics alter renal Na handling, Na excretion was examined in KidVD+ mice during acute and chronic salt loading conditions. RESULTS: Renal VEGF-D induction for 3 weeks enhanced lymphatic density and significantly attenuated blood pressure in KidVD+ mice whereas KidVD- mice remained hypertensive. No differences were identified in renal immune cells, however, the urinary Na excretion was increased significantly in KidVD+ mice. KidVD+ mice demonstrated normal basal sodium handling, but following chronic high salt loading, KidVD+ mice had a significantly lower blood pressure along with increased urinary fractional excretion of Na. Mechanistically, KidVD+ mice demonstrated decreased renal abundance of total NCC and cleaved ENaCα Na transporters, increased renal tissue fluid volume, and increased plasma ANP. CONCLUSION: Our findings demonstrate that therapeutically augmenting renal lymphatics increases natriuresis and reduces blood pressure under sodium retention conditions.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/fisiopatologia , Rim/fisiopatologia , Linfangiogênese/fisiologia , Natriurese/fisiologia , Sódio/metabolismo , Animais , Hipertensão/induzido quimicamente , Masculino , Camundongos , Camundongos Transgênicos , NG-Nitroarginina Metil Éster , Cloreto de Sódio na Dieta , Fator D de Crescimento do Endotélio Vascular/genética
9.
Int J Biol Macromol ; 110: 157-166, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29410001

RESUMO

Lysostaphin (LST) is a bacteriocin that cleaves within the pentaglycine cross bridge of Staphylococcus aureus peptidoglycan. Previous studies have reported the high efficiency of LST even against multi drug resistant S. aureus including methicillin resistant S. aureus (MRSA). In this study, we have developed a new chitosan based hydrogel formulation of LST to exploit its anti-staphylococcal activity. The atomic interactions of LST with chitosan were studied by molecular docking studies. The rheology and the antibacterial properties of the developed LSTC gel were evaluated. The developed LST containing chitosan hydrogel (LSTC gel) was flexible, flows smoothly and remains stable at physiological temperature. The in vitro studies by agar well diffusion and ex vivo studies in porcine skin model exhibited a reduction in S. aureus survival by ∼3 Log10CFU/mL in the presence of LSTC gel. The cytocompatibility of the gel was tested in vitro using macrophage RAW 264.7 cell line and in vivo in Drosophila melanogaster. A gradual disruption of S. aureus biofilms with the increase of LST concentrations in the LSTC gel was observed which was confirmed by SEM analysis. We conclude that LSTC gel could be highly effectual and advantageous over antibiotics in treating staphylococcal-topical and biofilm infections.


Assuntos
Biofilmes/efeitos dos fármacos , Quitosana , Hidrogéis , Lisostafina , Staphylococcus aureus Resistente à Meticilina/fisiologia , Infecções Estafilocócicas/tratamento farmacológico , Animais , Quitosana/química , Quitosana/farmacologia , Drosophila melanogaster , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Lisostafina/química , Lisostafina/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Células RAW 264.7 , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/patologia , Suínos
10.
Colloids Surf B Biointerfaces ; 160: 40-47, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922635

RESUMO

Salmonella infections and their gallstone associated biofilm infections are difficult to treat due to poor penetration of antibiotics into the intracellular compartments of macrophages and within biofilms. Here we developed ciprofloxacin loaded chitosan nanoparticles (cCNPs) and fucoidan (Fu) coated cCNPs (Fu-cCNPs). Characterizations of these nanoparticles were carried out using Dynamic Light Scattering , Transmission electron microscopy and Fourier transform infrared spectroscopy. The prepared cCNPs and Fu-cCNPs have the size range of 124±7nm and 320±18nm, respectively. Both nanoparticles were found to be non-hemolytic and cytocompatible. In vitro sustained release of ciprofloxacin was observed from both cCNPs and Fu-cCNPs over a period of 2 weeks. The antimicrobial activity of cCNPs and Fu-cCNPs was tested under in vitro and in vivo conditions. The intracellular anti-Salmonella activity of Fu-cCNPs was 2 fold higher than cCNPs and 6 fold higher than ciprofloxacin alone. Fluorescence microscopic images confirmed enhanced delivery of Fu-cCNPs than the cCNPs within the intracellular compartment of macrophages. Both cCNPs and Fu-cCNPs are found to be equally effective in dispersing Salmonella Paratyphi A gallstone biofilms. The in vivo antibacterial activities of Fu-cCNPs were superior to cCNPs which we have validated using Salmonella Paratyphi A infected Drosophila melanogaster fly model. Our overall results showed that (1) Fu-cCNPs are more effective in eradicating Salmonella infections than cCNPs; (2) both cCNPs and Fu-cCNPs were equally effective in dispersing Salmonella gallstone biofilms.


Assuntos
Biofilmes/efeitos dos fármacos , Quitosana/química , Ciprofloxacina/farmacologia , Nanopartículas/química , Polissacarídeos/química , Salmonella/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Ciprofloxacina/administração & dosagem , Ciprofloxacina/química , Drosophila melanogaster/microbiologia , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Masculino , Camundongos , Microscopia Eletrônica , Nanopartículas/ultraestrutura , Células RAW 264.7 , Salmonella/fisiologia , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Int J Med Microbiol ; 307(7): 388-397, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28802679

RESUMO

Staphylococcus aureus (S. aureus) is one of the most common pathogen causing septic arthritis. To colonize the joints and establish septic arthritis this bacterium needs to resist the host innate immune responses. Lysozyme secreted by neutrophils and macrophages is an important defense protein present in the joint synovial fluids. S. aureus is known to be resistant to lysozyme due to its peptidoglycan modification by O-acetylation of N-acetyl muramic acid. In this study we have investigated the role of O-acetylated peptidoglycan in septic arthritis. Using mouse models for both local and hematogenous S. aureus arthritis we compared the onset and progress of the disease induced by O-acetyl transferase mutant and the parenteral wild type SA113 strain. The disease progression was assessed by observing the clinical parameters including body weight, arthritis, and functionality of the affected limbs. Further X-ray and histopathological examinations were performed to monitor the synovitis and bone damage. In local S. aureus arthritis model, mice inoculated with the ΔoatA strain developed milder disease (in terms of knee swelling, motor and movement functionality) compared to mice inoculated with the wild type SA113 strain. X-ray and histopathological data revealed that ΔoatA infected mice knee joints had significantly lesser joint destruction, which was accompanied by reduced bacterial load in knee joints. Similarly, in hematogenous S. aureus arthritis model, ΔoatA mutant strain induced significantly less severe clinical septic arthritis compared to its parental strain, which is in accordance with radiological findings. Our data indicate that peptidoglycan O-acetylation plays an important role in S. aureus mediated septic arthritis.


Assuntos
Artrite Infecciosa/microbiologia , Peptidoglicano/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Artrite Infecciosa/fisiopatologia , Parede Celular/química , Parede Celular/metabolismo , Modelos Animais de Doenças , Feminino , Articulação do Joelho/microbiologia , Articulação do Joelho/patologia , Articulação do Joelho/fisiopatologia , Locomoção , Camundongos , Camundongos Endogâmicos BALB C , Ácidos Murâmicos/metabolismo , Muramidase/metabolismo , Mutação , Método Simples-Cego , Infecções Estafilocócicas/fisiopatologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética
12.
ACS Appl Mater Interfaces ; 8(34): 22074-83, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27508491

RESUMO

Compared to the current treatment modalities, the use of an injectable hydrogel system, loaded with antibiotic encapsulated nanoparticles for the purpose of treating Staphylococcus aureus (S. aureus) chronic wound infections have several advantages. These include adhesiveness to infection site, reduced frequency of dressings, sustained drug release, inhibition of bacterial growth, and increased healing. In the present work tigecycline nanoparticles were loaded into chitosan-platelet-rich plasma (PRP) hydrogel. The tigecycline nanoparticles (95 ± 13 nm) were synthesized through ionic cross-linking method using chitosan, tripolyphosphate, and tigecycline and characterized by dynamic light scattering (DLS), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). The synthesized nanoparticles and activated PRP powder were mixed with chitosan hydrogel to form a homogeneous gel. Rheology studies have confirmed the shear thinning property, thermal stability, and injectability of the prepared gel systems. The gel system was further assessed for its drug release property and found that it was released in a sustained manner. Hemolysis and blood-clotting assays demonstrated that the gel system was neither a hemolysin nor a hamper to the clotting cascade. Cell viability results showed that these nanoparticles were cyto-compatible. The bioactivity of PRP loaded chitosan gel toward fibroblast cell line was studied using cell proliferation and migration assay. In vitro antibacterial studies revealed that the gel system inhibited bacterial growth to a great extent. The antibacterial activity was further analyzed using ex vivo porcine skin assay. In vivo anti-Staphylococcal activity of the prepared hydrogels was studied using a Drosophila melanogaster infection model. The tigecycline and tigecycline nanoparticle incorporated chitosan gel showed a significant antibacterial activity against S. aureus. Thus, the gel system is an effective medium for antibiotic delivery and can be applied on the infection sites to effectively forestall various skin infections caused by S. aureus.


Assuntos
Hidrogéis/química , Animais , Antibacterianos , Quitosana , Drosophila melanogaster , Minociclina/análogos & derivados , Plasma Rico em Plaquetas , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Tigeciclina
13.
Int J Med Microbiol ; 306(4): 237-48, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27212459

RESUMO

Candida albicans and Staphylococcus aureus are opportunistic pathogens. Despite causing a number of independent infections, both pathogens can co-infect to cause urinary tract infections, skin infections, biofilm associated infections, sepsis and pneumonia. Infections of these two pathogens especially their biofilm associated infections are often difficult to treat using currently available anti-bacterial and anti-fungal agents. In order to identify a common anti-microbial agent which could confer a broad range of protection against their infections, we screened several phytochemicals and identified plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), a phytochemical from Plumbago species as a potent antimicrobial agent against S. aureus and C. albicans, with a minimum inhibitory concentration of 5µg/ml. Antimicrobial activity of plumbagin was validated using an ex-vivo porcine skin model. For better understanding of the antimicrobial activity of plumbagin, a Drosophila melanogaster infection model was used, where D. melanogaster was infected using S. aureus and C. albicans, or with both organisms. The fly's survival rate was dramatically increased when infected flies were treated using plumbagin. Further, plumbagin was effective in preventing and dispersing catheter associated biofilms formed by these pathogens. The overall results of this work provides evidence that plumbagin, possesses an excellent antimicrobial activity which should be explored further for the treatment of S. aureus and C. albicans infections.


Assuntos
Anti-Infecciosos/farmacologia , Candida albicans/efeitos dos fármacos , Naftoquinonas/farmacologia , Compostos Fitoquímicos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Candidíase/tratamento farmacológico , Modelos Animais de Doenças , Drosophila melanogaster , Feminino , Testes de Sensibilidade Microbiana , Naftoquinonas/química , Naftoquinonas/isolamento & purificação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Plumbaginaceae/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/fisiologia , Análise de Sobrevida , Resultado do Tratamento
14.
Colloids Surf B Biointerfaces ; 136: 84-92, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26363270

RESUMO

Intervertebral disc degeneration, occurring mainly in nucleus pulposus (NP), is a leading cause of low back pain. In seeking to mitigate this condition, investigators in the field of NP tissue engineering have increasingly studied the use of hydrogels. However, these hydrogels should possess appropriate mechanical strength and swelling pressure, and concurrently support the proliferation of chondrocyte-like cells. The objective of this study was to develop and validate a composite hydrogel for NP tissue engineering, made of chitosan-poly(hydroxybutyrate-co-valerate) (CP) with chondroitin sulfate (CS) nanoparticles, without using a cross linker. The water uptake ability, as well as the viscoelastic properties of this composite hydrogel, was similar to native tissue, as reflected in the complex shear modulus and stress relaxation values. The hydrogel could withstand varying stress corresponding to daily activities like lying down (0.01 MPa), sitting (0.5 MPa) and standing (1.0 MPa) under dynamic conditions. The hydrogels were stable in PBS for 2 weeks and its stiffness, elastic and viscous modulus did not alter significantly during this period. Both CP and CP-CS hydrogels could assist the viability and adhesion of adipose derived rat mesenchymal stem cells (ADMSCs). The viability and chondrogenic differentiation of MSCs was significantly enhanced in presence of CS nanoparticles. Thus, CS nanoparticles-incorporated chitosan-PHBV hydrogels offer great potential for NP tissue engineering.


Assuntos
Quitosana/química , Sulfatos de Condroitina/química , Hidrogéis , Disco Intervertebral , Nanopartículas , Poliésteres/química , Engenharia Tecidual , Animais , Diferenciação Celular , Células Cultivadas , Células-Tronco Mesenquimais/citologia , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Nanotechnology ; 25(11): 115101, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24561517

RESUMO

Recent trends in titanium implants are towards the development of nanoscale topographies that mimic the nanoscale properties of bone tissue. Although the nanosurface promotes the integration of osteoblast cells, infection related problems can also occur, leading to implant failure. Therefore it is imperative to reduce bacterial adhesion on an implant surface, either with or without the use of drugs/antibacterial agents. Herein, we have investigated two different aspects of Ti surfaces in inhibiting bacterial adhesion and concurrently promoting mammalian cell adhesion. These include (i) the type of nanoscale topography (Titania nanotube (TNT) and Titania nanoleaf (TNL)) and (ii) the presence of an antibacterial agent like zinc oxide nanoparticles (ZnOnp) on Ti nanosurfaces. To address this, periodically arranged TNT (80-120 nm) and non-periodically arranged TNL surfaces were generated by the anodization and hydrothermal techniques respectively, and incorporated with ZnOnp of different concentrations (375 µM, 750 µM, 1.125 mM and 1.5 mM). Interestingly, TNL surfaces decreased the adherence of staphylococcus aureus while increasing the adhesion and viability of human osteosarcoma MG63 cell line and human mesenchymal stem cells, even in the absence of ZnOnp. In contrast, TNT surfaces exhibited an increased bacterial and mammalian cell adhesion. The influence of ZnOnp on these surfaces in altering the bacterial and cell adhesion was found to be concentration dependent, with an optimal range of 375-750 µM. Above 750 µM, although bacterial adhesion was reduced, cellular viability was considerably affected. Thus our study helps us to infer that nanoscale topography by itself or its combination with an optimal concentration of antibacterial ZnOnp would provide a differential cell behavior and thereby a desirable biological response, facilitating the long term success of an implant.


Assuntos
Antibacterianos/farmacologia , Células-Tronco Mesenquimais/microbiologia , Nanoestruturas/química , Staphylococcus aureus/efeitos dos fármacos , Óxido de Zinco/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanotubos/química , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA