Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Trends Biotechnol ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38040620

RESUMO

RNA switches respond to specific ligands to control gene expression. They are widely used in synthetic biology applications and hold potential for future RNA-based therapeutic breakthroughs. However, the crux is their precise design. Here, we will discuss how inverse-RNA-folding could be utilized for the accurate design of RNA switches.

2.
PLoS Comput Biol ; 19(8): e1011309, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535676

RESUMO

Hepatitis B virus (HBV) infection kinetics in immunodeficient mice reconstituted with humanized livers from inoculation to steady state is highly dynamic despite the absence of an adaptive immune response. To recapitulate the multiphasic viral kinetic patterns, we developed an agent-based model that includes intracellular virion production cycles reflecting the cyclic nature of each individual virus lifecycle. The model fits the data well predicting an increase in production cycles initially starting with a long production cycle of 1 virion per 20 hours that gradually reaches 1 virion per hour after approximately 3-4 days before virion production increases dramatically to reach to a steady state rate of 4 virions per hour per cell. Together, modeling suggests that it is the cyclic nature of the virus lifecycle combined with an initial slow but increasing rate of HBV production from each cell that plays a role in generating the observed multiphasic HBV kinetic patterns in humanized mice.


Assuntos
Hepatite B , Replicação Viral , Animais , Camundongos , Cinética , DNA Viral , Vírus da Hepatite B/genética , Vírion/fisiologia
3.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36951499

RESUMO

Riboswitches are conserved structural ribonucleic acid (RNA) sensors that are mainly found to regulate a large number of genes/operons in bacteria. Presently, >50 bacterial riboswitch classes have been discovered, but only the thiamine pyrophosphate riboswitch class is detected in a few eukaryotes like fungi, plants and algae. One of the most important challenges in riboswitch research is to discover existing riboswitch classes in eukaryotes and to understand the evolution of bacterial riboswitches. However, traditional search methods for riboswitch detection have failed to detect eukaryotic riboswitches besides just one class and any distant structural homologs of riboswitches. We developed a novel approach based on inverse RNA folding that attempts to find sequences that match the shape of the target structure with minimal sequence conservation based on key nucleotides that interact directly with the ligand. Then, to support our matched candidates, we expanded the results into a covariance model representing similar sequences preserving the structure. Our method transforms a structure-based search into a sequence-based search that considers the conservation of secondary structure shape and ligand-binding residues. This method enables us to identify a potential structural candidate in fungi that could be the distant homolog of bacterial purine riboswitches. Further, phylogenomic analysis and evolutionary distribution of this structural candidate indicate that the most likely point of origin of this structural candidate in these organisms is associated with the loss of traditional purine riboswitches. The computational approach could be applicable to other domains and problems in RNA research.


Assuntos
Riboswitch , Riboswitch/genética , Dobramento de RNA , RNA , Ligantes , Bactérias/genética , Fungos/genética , Purinas , RNA Bacteriano/genética , Conformação de Ácido Nucleico
4.
Mathematics (Basel) ; 10(20)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36540372

RESUMO

Hepatitis D virus is an infectious subviral agent that can only propagate in people infected with hepatitis B virus. In this study, we modified and further developed a recent model for early hepatitis D virus and hepatitis B virus kinetics to better reproduce hepatitis D virus and hepatitis B virus kinetics measured in infected patients during anti-hepatitis D virus treatment. The analytical solutions were provided to highlight the new features of the modified model. The improved model offered significantly better prospects for modeling hepatitis D virus and hepatitis B virus interactions.

5.
BMC Bioinformatics ; 23(Suppl 8): 424, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241988

RESUMO

BACKGROUND: RNA deleterious point mutation prediction was previously addressed with programs such as RNAmute and MultiRNAmute. The purpose of these programs is to predict a global conformational rearrangement of the secondary structure of a functional RNA molecule, thereby disrupting its function. RNAmute was designed to deal with only single point mutations in a brute force manner, while in MultiRNAmute an efficient approach to deal with multiple point mutations was developed. The approach used in MultiRNAmute is based on the stabilization of the suboptimal RNA folding prediction solutions and/or destabilization of the optimal folding prediction solution of the wild type RNA molecule. The MultiRNAmute algorithm is significantly more efficient than the brute force approach in RNAmute, but in the case of long sequences and large m-point mutation sets the MultiRNAmute becomes exponential in examining all possible stabilizing and destabilizing mutations. RESULTS: An inherent limitation in the RNAmute and MultiRNAmute programs is their ability to predict only substitution mutations, as these programs were not designed to work with deletion or insertion mutations. To address this limitation we herein develop a very fast algorithm, based on suboptimal folding solutions, to predict a predefined number of multiple point deleterious mutations as specified by the user. Depending on the user's choice, each such set of mutations may contain combinations of deletions, insertions and substitution mutations. Additionally, we prove the hardness of predicting the most deleterious set of point mutations in structural RNAs. CONCLUSIONS: We developed a method that extends our previous MultiRNAmute method to predict insertion and deletion mutations in addition to substitutions. The additional advantage of the new method is its efficiency to find a predefined number of deleterious mutations. Our new method may be exploited by biologists and virologists prior to site-directed mutagenesis experiments, which involve indel mutations along with substitutions. For example, our method may help to investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary structure.


Assuntos
Mutação INDEL , RNA , Mutação , Mutação Puntual , RNA/química , RNA/genética , Análise de Sequência de RNA
6.
Mathematics (Basel) ; 10(12)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36245949

RESUMO

Mathematical models, some of which incorporate both intracellular and extracellular hepatitis C viral kinetics, have been advanced in recent years for studying HCV-host dynamics, antivirals mode of action, and their efficacy. The standard ordinary differential equation (ODE) hepatitis C virus (HCV) kinetic model keeps track of uninfected cells, infected cells, and free virus. In multiscale models, a fourth partial differential equation (PDE) accounts for the intracellular viral RNA (vRNA) kinetics in an infected cell. The PDE multiscale model is substantially more difficult to solve compared to the standard ODE model, with governing differential equations that are stiff. In previous contributions, we developed and implemented stable and efficient numerical methods for the multiscale model for both the solution of the model equations and parameter estimation. In this contribution, we perform sensitivity analysis on model parameters to gain insight into important properties and to ensure our numerical methods can be safely used for HCV viral dynamic simulations. Furthermore, we generate in-silico patients using the multiscale models to perform machine learning from the data, which enables us to remove HCV measurements on certain days and still be able to estimate meaningful observations with a sufficiently small error.

7.
Biology (Basel) ; 11(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892966

RESUMO

Soil bacteria respond rapidly to changes in new environmental conditions. For adaptation to the new environment, they could mutate their genome, which impacts the alternation of the functional and regulatory landscape. Sometimes, these genetic and ecological changes may drive the bacterial evolution and sympatric speciation. Although sympatric speciation has been controversial since Darwin suggested it in 1859, there are several strong theoretical or empirical evidences to support it. Sympatric speciation associated with soil bacteria remains largely unexplored. Here, we provide potential evidence of sympatric speciation of soil bacteria by comparison of metagenomics from two sharply contrasting abutting divergence rock and soil types (Senonian chalk and its rendzina soil, and abutting Pleistocene basalt rock and basalt soil). We identified several bacterial species with significant genetic differences in the same species between the two soil types and ecologies. We show that the bacterial community composition has significantly diverged between the two soils; correspondingly, their functions were differentiated in order to adapt to the local ecological stresses. The ecologies, such as water availability and pH value, shaped the adaptation and speciation of soil bacteria revealed by the clear-cut genetic divergence. Furthermore, by a novel analysis scheme of riboswitches, we highlight significant differences in structured non-coding RNAs between the soil bacteria from two divergence soil types, which could be an important driver for functional adaptation. Our study provides new insight into the evolutionary divergence and incipient sympatric speciation of soil bacteria under microclimatic ecological differences.

8.
Open Forum Infect Dis ; 9(5): ofac157, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35493122

RESUMO

Shortening duration of direct-acting antiviral therapy for chronic hepatitis C could provide cost savings, reduce medication exposure, and foster adherence and treatment completion in special populations. The current analysis indicates that measuring hepatitis C virus at baseline and on days 7 and 14 of therapy can identify patients for shortening therapy duration.

9.
Math Biosci ; 343: 108756, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883104

RESUMO

Mathematical models for hepatitis C virus (HCV) dynamics have provided a means for evaluating the antiviral effectiveness of therapy and estimating treatment outcomes such as the time to cure. Recently, a mathematical modeling approach was used in the first proof-of-concept clinical trial assessing in real-time the utility of response-guided therapy with direct-acting antivirals (DAAs) in chronic HCV-infected patients. Several retrospective studies have shown that mathematical modeling of viral kinetics predicts time to cure of less than 12 weeks in the majority of individuals treated with sofosbuvir-based as well as other DAA regimens. A database of these studies was built, and machine learning methods were evaluated for their ability to estimate the time to cure for each patient to facilitate real-time modeling studies. Data from these studies exploring mathematical modeling of HCV kinetics under DAAs in 266 chronic HCV-infected patients were gathered. Different learning methods were applied and trained on part of the dataset ('train' set), to predict time to cure on the untrained part ('test' set). Our results show that this machine learning approach provides a means for establishing an accurate time to cure prediction that will support the implementation of individualized treatment.


Assuntos
Hepatite C Crônica , Hepatite C , Antivirais/uso terapêutico , Quimioterapia Combinada , Hepacivirus , Hepatite C Crônica/tratamento farmacológico , Humanos , Cinética , Aprendizado de Máquina , Modelos Teóricos , Estudos Retrospectivos , Resultado do Tratamento
10.
Mathematics (Basel) ; 9(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34540628

RESUMO

Hepatitis D virus (HDV) is classified according to eight genotypes. The various genotypes are included in the HDVdb database, where each HDV sequence is specified by its genotype. In this contribution, a mathematical analysis is performed on RNA sequences in HDVdb. The RNA folding predicted structures of the Genbank HDV genome sequences in HDVdb are classified according to their coarse-grain tree-graph representation. The analysis allows discarding in a simple and efficient way the vast majority of the sequences that exhibit a rod-like structure, which is important for the virus replication, to attempt to discover other biological functions by structure consideration. After the filtering, there remain only a small number of sequences that can be checked for their additional stem-loops besides the main one that is known to be responsible for virus replication. It is found that a few sequences contain an additional stem-loop that is responsible for RNA editing or other possible functions. These few sequences are grouped into two main classes, one that is well-known experimentally belonging to genotype 3 for patients from South America associated with RNA editing, and the other that is not known at present belonging to genotype 7 for patients from Cameroon. The possibility that another function besides virus replication reminiscent of the editing mechanism in HDV genotype 3 exists in HDV genotype 7 has not been explored before and is predicted by eigenvalue analysis. Finally, when comparing native and shuffled sequences, it is shown that HDV sequences belonging to all genotypes are accentuated in their mutational robustness and thermodynamic stability as compared to other viruses that were subjected to such an analysis.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35282153

RESUMO

Hepatitis delta virus (HDV) is an infectious subviral agent that can only propagate in people infected with hepatitis B virus (HBV). HDV/HBV infection is considered to be the most severe form of chronic viral hepatitis. In this contribution, a mathematical model for the interplay between HDV and HBV under anti-HDV treatment is presented. Previous models were not designed to account for the observation that HBV rises when HDV declines with HDV-specific therapy. In the simple model presented here, HDV and HBV kinetics are coupled, giving rise to an improved viral kinetic model that simulates the early interplay of HDV and HBV during anti-HDV therapy.

12.
AIP Conf Proc ; 22932020.
Artigo em Inglês | MEDLINE | ID: mdl-33349734

RESUMO

Callibration in mathematical models that are based on differential equations is known to be of fundamental importance. For sophisticated models such as age-structured models that simulate biological agents, parameter estimation or fitting (callibration) that solves all cases of data points available presents a formidable challenge, as efficiency considerations need to be employed in order for the method to become practical. In the case of multiscale models of hepatitis C virus dynamics that deal with partial differential equations (PDEs), a fully numerical parameter estimation method was developed that does not require an analytical approximation of the solution to the multiscale model equations, avoiding the necessity to derive the long-term approximation for each model. However, the method is considerably slow because of precision problems in estimating derivatives with respect to the parameters near their boundary values, making it almost impractical for general use. In order to overcome this limitation, two steps have been taken that significantly reduce the running time by orders of magnitude and thereby lead to a practical method. First, constrained optimization is used, letting the user add constraints relating to the boundary values of each parameter before the method is executed. Second, optimization is performed by derivative-free methods, eliminating the need to evaluate expensive numerical derviative approximations. These steps that were successful in significantly speeding up a highly non-efficient approach, rendering it practical, can also be adapted to multiscale models of other viruses and other sophisticated differential equation models. The newly efficient methods that were developed as a result of the above approach are described. Illustrations are provided using a user-friendly simulator that incorporates the efficient methods for multiscale models. We provide a simulator called HCVMultiscaleFit with a Graphical User Interface that applies these methods and is useful to perform parameter estimation for simulating viral dynamics during antiviral treatment.

13.
Mathematics (Basel) ; 8(9)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33224865

RESUMO

Parameter estimation in mathematical models that are based on differential equations is known to be of fundamental importance. For sophisticated models such as age-structured models that simulate biological agents, parameter estimation that addresses all cases of data points available presents a formidable challenge and efficiency considerations need to be employed in order for the method to become practical. In the case of age-structured models of viral hepatitis dynamics under antiviral treatment that deal with partial differential equations, a fully numerical parameter estimation method was developed that does not require an analytical approximation of the solution to the multiscale model equations, avoiding the necessity to derive the long-term approximation for each model. However, the method is considerably slow because of precision problems in estimating derivatives with respect to the parameters near their boundary values, making it almost impractical for general use. In order to overcome this limitation, two steps have been taken that significantly reduce the running time by orders of magnitude and thereby lead to a practical method. First, constrained optimization is used, letting the user add constraints relating to the boundary values of each parameter before the method is executed. Second, optimization is performed by derivative-free methods, eliminating the need to evaluate expensive numerical derivative approximations. The newly efficient methods that were developed as a result of the above approach are described for hepatitis C virus kinetic models during antiviral therapy. Illustrations are provided using a user-friendly simulator that incorporates the efficient methods for both the ordinary and partial differential equation models.

14.
Antiviral Res ; 180: 104862, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32592829

RESUMO

BACKGROUND & AIMS: Mathematical modeling of viral kinetics has been shown to identify patients with chronic hepatitis C virus (HCV) infection who could be cured with a shorter duration of direct-acting antiviral (DAA) treatment. However, modeling therapy duration has yet to be evaluated in recently infected individuals. The aim of this study was to retrospectively examine whether modeling can predict outcomes of six-week sofosbuvir (SOF) and weight-based ribavirin (R) therapy in individuals with recent HCV infection. METHODS: Modeling was used to estimate viral host parameters and to predict time to cure for 12 adults with recent HCV infection (<12 months of infection) who received six weeks of treatment with SOF + R. RESULTS: Modeling results yielded a 100% negative predictive value for SOF + R treatment response in nine participants and suggested that a median of 13 [interquartile range: 8-16] weeks of therapy would be required for these patients to achieve cure. Modeling predicted cure after 5 weeks of therapy in the only modeled participant who achieved a sustained virological response. However, cure was also predicted for two participants who relapsed following treatment. CONCLUSIONS: The modeling results confirm that longer than 6 weeks of SOF + R is needed to reach cure in individuals with recent HCV infection. Prospective real-time modeling under current potent DAA regimens is needed to validate the potential of response-guided therapy in the management of recent HCV infection.


Assuntos
Antivirais/uso terapêutico , Duração da Terapia , Hepatite C/tratamento farmacológico , Modelos Teóricos , Adulto , Idoso , Quimioterapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , RNA Viral/sangue , Estudos Retrospectivos , Ribavirina/uso terapêutico , Sofosbuvir/uso terapêutico , Resposta Viral Sustentada , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
15.
J Infect Dis ; 222(7): 1165-1169, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32363394

RESUMO

We recently showed in a proof-of-concept study that real-time modeling-based response-guided therapy can shorten hepatitis C virus treatment duration with sofosbuvir-velpatasvir, elbasvir-grazoprevir, and sofosbuvir-ledipasvir without compromising efficacy, confirming our retrospective modeling reports in >200 patients. However, retrospective modeling of pibrentasvir-glecaprevir (P/G) treatment has yet to be evaluated. In the current study, modeling hepatitis C virus kinetics in 44 cirrhotic and noncirrhotic patients predicts that P/G treatment might have been reduced to 4, 6, and 7 weeks in 16%, 34%, and 14% of patients, respectively. These results support the further evaluation of a modeling-based response-guided therapy approach using P/G.


Assuntos
Antivirais/administração & dosagem , Benzimidazóis/administração & dosagem , Hepatite C Crônica/tratamento farmacológico , Pirrolidinas/administração & dosagem , Quinoxalinas/administração & dosagem , Sulfonamidas/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Amidas/administração & dosagem , Carbamatos/administração & dosagem , Ciclopropanos/administração & dosagem , Esquema de Medicação , Combinação de Medicamentos , Quimioterapia Combinada , Duração da Terapia , Feminino , Fluorenos/administração & dosagem , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , RNA Viral/sangue , Estudos Retrospectivos , Sofosbuvir/administração & dosagem , Resposta Viral Sustentada , Fatores de Tempo
16.
Bioinformatics ; 36(9): 2920-2922, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971575

RESUMO

SUMMARY: RNA design has conceptually evolved from the inverse RNA folding problem. In the classical inverse RNA problem, the user inputs an RNA secondary structure and receives an output RNA sequence that folds into it. Although modern RNA design methods are based on the same principle, a finer control over the resulting sequences is sought. As an important example, a substantial number of non-coding RNA families show high preservation in specific regions, while being more flexible in others and this information should be utilized in the design. By using the additional information, RNA design tools can help solve problems of practical interest in the growing fields of synthetic biology and nanotechnology. incaRNAfbinv 2.0 utilizes a fragment-based approach, enabling a control of specific RNA secondary structure motifs. The new version allows significantly more control over the general RNA shape, and also allows to express specific restrictions over each motif separately, in addition to other advanced features. AVAILABILITY AND IMPLEMENTATION: incaRNAfbinv 2.0 is available through a standalone package and a web-server at https://www.cs.bgu.ac.il/incaRNAfbinv. Source code, command-line and GUI wrappers can be found at https://github.com/matandro/RNAsfbinv. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA , Software , Motivos de Nucleotídeos , RNA/genética , Dobramento de RNA , Análise de Sequência de RNA
17.
Bull Math Biol ; 81(10): 3675-3721, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31338739

RESUMO

Mathematical models that are based on differential equations require detailed knowledge about the parameters that are included in the equations. Some of the parameters can be measured experimentally while others need to be estimated. When the models become more sophisticated, such as in the case of multiscale models of hepatitis C virus dynamics that deal with partial differential equations (PDEs), several strategies can be tried. It is possible to use parameter estimation on an analytical approximation of the solution to the multiscale model equations, namely the long-term approximation, but this limits the scope of the parameter estimation method used and a long-term approximation needs to be derived for each model. It is possible to transform the PDE multiscale model to a system of ODEs, but this has an effect on the model parameters themselves and the transformation can become problematic for some models. Finally, it is possible to use numerical solutions for the multiscale model and then use canned methods for the parameter estimation, but the latter is making the user dependent on a black box without having full control over the method. The strategy developed here is to start by working directly on the multiscale model equations for preparing them toward the parameter estimation method that is fully coded and controlled by the user. It can also be adapted to multiscale models of other viruses. The new method is described, and illustrations are provided using a user-friendly simulator that incorporates the method.


Assuntos
Hepacivirus/fisiologia , Hepatite C Crônica/virologia , Modelos Biológicos , Antivirais/uso terapêutico , Simulação por Computador , Hepatite C Crônica/terapia , Humanos , Cinética , Conceitos Matemáticos
18.
NPJ Precis Oncol ; 3: 12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31044156

RESUMO

Paclitaxel, the most commonly used form of chemotherapy, is utilized in curative protocols in different types of cancer. The response to treatment differs among patients. Biological interpretation of a mechanism to explain this personalized response is still unavailable. Since paclitaxel is known to target BCL2 and TUBB1, we used pan-cancer genomic data from hundreds of patients to show that a single-nucleotide variant in the BCL2 sequence can predict a patient's response to paclitaxel. Here, we show a connection between this BCL2 genomic variant, its transcript structure, and protein abundance. We demonstrate these findings in silico, in vitro, in formalin-fixed paraffin-embedded (FFPE) tissue, and in patient lymphocytes. We show that tumors with the specific variant are more resistant to paclitaxel. We also show that tumor and normal cells with the variant express higher levels of BCL2 protein, a phenomenon that we validated in an independent cohort of patients. Our results indicate BCL2 sequence variations as determinants of chemotherapy resistance. The knowledge of individual BCL2 genomic sequences prior to the choice of chemotherapy may improve patient survival. The current work also demonstrates the benefit of community-wide, integrative omics data sources combined with in-lab experimentation and validation sets.

19.
Bioinformatics ; 35(18): 3541-3543, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30726866

RESUMO

SUMMARY: Riboswitches are cis-regulatory non-coding genomic segments that control the expression of downstream genes by undergoing conformational change upon ligand binding. We present a comprehensive database of prokaryotic riboswitches that allows the user to search for riboswitches using multiple criteria, extract information about riboswitch location and gene/operon it regulates. RiboD provides a very useful resource that can be utilized for the better understanding of riboswitch-based gene regulation in bacteria and archaea. AVAILABILITY AND IMPLEMENTATION: RiboD can be freely accessed on the web at http://ribod.iiserkol.ac.in/.


Assuntos
Riboswitch , Archaea , Bactérias , Bases de Dados Factuais , Óperon , Software
20.
Sci Rep ; 8(1): 5563, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615754

RESUMO

Riboswitches are metabolite or ion sensing cis-regulatory elements that regulate the expression of the associated genes involved in biosynthesis or transport of the corresponding metabolite. Among the nearly 40 different classes of riboswitches discovered in bacteria so far, only the TPP riboswitch has also been found in algae, plants, and in fungi where their presence has been experimentally validated in a few instances. We analyzed all the available complete fungal and related genomes and identified TPP riboswitch-based regulation systems in 138 fungi and 15 oomycetes. We find that TPP riboswitches are most abundant in Ascomycota and Basidiomycota where they regulate TPP biosynthesis and/or transporter genes. Many of these transporter genes were found to contain conserved domains consistent with nucleoside, urea and amino acid transporter gene families. The genomic location of TPP riboswitches when correlated with the intron structure of the regulated genes enabled prediction of the precise regulation mechanism employed by each riboswitch. Our comprehensive analysis of TPP riboswitches in fungi provides insights about the phylogenomic distribution, regulatory patterns and functioning mechanisms of TPP riboswitches across diverse fungal species and provides a useful resource that will enhance the understanding of RNA-based gene regulation in eukaryotes.


Assuntos
Evolução Molecular , Fungos/genética , Genômica , Riboswitch/genética , Sequência de Bases , Regulação da Expressão Gênica , Oomicetos/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA