Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biomol Struct Dyn ; 40(10): 4642-4661, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33317396

RESUMO

Influenza A/H1N1 virus hemagglutinin (HA) is an integral type I glycoprotein that contains a large glycosylated ectodomain, a transmembrane domain, and a cytoplasmic tail (CT) of 10-14 amino acid residues. There are absolutely no data on the secondary or tertiary structure of the HA CT, which is important for virus pathogenesis. Three highly conserved cysteines are post-translationally modified by the attachment of fatty acid residues that pin the CT to the lipid membrane inside the virion. We applied circular dichroism (CD) and fluorescence spectroscopy analysis to examine four synthetic peptides corresponding to 14-15 C-terminal residues of H1 subtype HA (NH2-WMCSNGSLQCRICI-COOH; NH2-FWMCSNGSLQCRICI-COOH), with free or acetaminomethylated cysteines, in the reduced or non-reduced state, at various pH values and temperatures. The CD analysis detected the formation of a ß-structure (30-65% according to the new BeStSel algorithm), in addition to an unstructured random coil, in every peptide in various conditions. It was completely or partially recognized as an antiparallel ß-structure that was also confirmed by the multi-bounce Horizontal Attenuated Total Reflectance Fourier Transformed Infrared (HATR-FTIR) spectroscopy analysis. According to the experimental data, as well as 3 D modeling, we assume that the amino acid sequence corresponding to the HA CT may form a short antiparallel ß-structure under the lipid membrane within a virion.Communicated by Ramaswamy H. Sarma.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H1N1 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Lipídeos , Peptídeos/química
2.
Membranes (Basel) ; 11(10)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34677538

RESUMO

Influenza A virus envelope contains lipid molecules of the host cell and three integral viral proteins: major hemagglutinin, neuraminidase, and minor M2 protein. Membrane-associated M1 matrix protein is thought to interact with the lipid bilayer and cytoplasmic domains of integral viral proteins to form infectious virus progeny. We used small-angle X-ray scattering (SAXS) and complementary techniques to analyze the interactions of different components of the viral envelope with M1 matrix protein. Small unilamellar liposomes composed of various mixtures of synthetic or "native" lipids extracted from Influenza A/Puerto Rico/8/34 (H1N1) virions as well as proteoliposomes built from the viral lipids and anchored peptides of integral viral proteins (mainly, hemagglutinin) were incubated with isolated M1 and measured using SAXS. The results imply that M1 interaction with phosphatidylserine leads to condensation of the lipid in the protein-contacting monolayer, thus resulting in formation of lipid tubules. This effect vanishes in the presence of the liquid-ordered (raft-forming) constituents (sphingomyelin and cholesterol) regardless of their proportion in the lipid bilayer. We also detected a specific role of the hemagglutinin anchoring peptides in ordering of viral lipid membrane into the raft-like one. These peptides stimulate the oligomerization of M1 on the membrane to form a viral scaffold for subsequent budding of the virion from the plasma membrane of the infected cell.

3.
J Biomol Struct Dyn ; 37(3): 671-690, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29388479

RESUMO

Influenza A virus, a member of the Orthomyxoviridae family of enveloped viruses, is one of the human and animal top killers, and its structure and components are therefore extensively studied during the last decades. The most abundant component, M1 matrix protein, forms a matrix layer (scaffold) under the viral lipid envelope, and the functional roles as well as structural peculiarities of the M1 protein are still under heavy debate. Despite multiple attempts of crystallization, no high resolution structure is available for the full length M1 of Influenza A virus. The likely reason for the difficulties lies in the intrinsic disorder of the M1 C-terminal part preventing diffraction quality crystals to be grown. Alternative structural methods including synchrotron small-angle X-ray scattering (SAXS), atomic force microscopy, cryo-electron microscopy/tomography are therefore widely applied to understand the structure of M1, its self-association and interactions with the lipid membrane and the viral nucleocapsid. These methods reveal striking similarities in the behavior of M1 and matrix proteins of other enveloped RNA viruses, with the differences accompanied by the specific features of the viral lifecycles, thus suggesting common interaction principles and, possibly, common evolutional ancestors. The structural information on the Influenza A virus M1 protein obtained to the date strongly suggests that the intrinsic disorder in the C-terminal domain has important functional implications.


Assuntos
Vírus da Influenza A/química , Proteínas da Matriz Viral/química , Antivirais/farmacologia , Ligação Proteica , Multimerização Proteica , Vírion/metabolismo
4.
PLoS One ; 8(12): e82431, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358182

RESUMO

Influenza A virus matrix protein M1 is one of the most important and abundant proteins in the virus particles broadly involved in essential processes of the viral life cycle. The absence of high-resolution data on the full-length M1 makes the structural investigation of the intact protein particularly important. We employed synchrotron small-angle X-ray scattering (SAXS), analytical ultracentrifugation and atomic force microscopy (AFM) to study the structure of M1 at acidic pH. The low-resolution structural models built from the SAXS data reveal a structurally anisotropic M1 molecule consisting of a compact NM-fragment and an extended and partially flexible C-terminal domain. The M1 monomers co-exist in solution with a small fraction of large clusters that have a layered architecture similar to that observed in the authentic influenza virions. AFM analysis on a lipid-like negatively charged surface reveals that M1 forms ordered stripes correlating well with the clusters observed by SAXS. The free NM-domain is monomeric in acidic solution with the overall structure similar to that observed in previously determined crystal structures. The NM-domain does not spontaneously self assemble supporting the key role of the C-terminus of M1 in the formation of supramolecular structures. Our results suggest that the flexibility of the C-terminus is an essential feature, which may be responsible for the multi-functionality of the entire protein. In particular, this flexibility could allow M1 to structurally organise the viral membrane to maintain the integrity and the shape of the intact influenza virus.


Assuntos
Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
Arch Virol ; 158(2): 467-72, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23065113

RESUMO

Hemagglutinin (HA) of influenza virus is S-acylated with stearate at a transmembrane cysteine and with palmitate at two cytoplasmic cysteines. The amount of stearate varies from 35 (in avian strains) to 12% (in human strains), although the acylation region exhibits only minor or even no amino acid differences between HAs. To address whether matrix proteins and neuraminidase affect stearoylation of HA, we used mass spectrometry to analyze laboratory reassortants containing avian virus HA and the internal proteins from a human virus. Only minor fluctuations in the amount of stearate were observed, implying that other viral proteins do not affect acylation of HA.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Orthomyxoviridae/química , Palmitatos/análise , Processamento de Proteína Pós-Traducional , Vírus Reordenados/química , Estearatos/análise , Acilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Espectrometria de Massas
6.
Virus Res ; 160(1-2): 294-304, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21763731

RESUMO

Interactions between model enzymes and the influenza virus hemagglutinin (HA) homotrimeric spike were addressed. We digested influenza virions (naturally occurring strains and laboratory reassortants) with bromelain or subtilisin Carlsberg and analyzed by MALDI-TOF mass spectrometry the resulting HA2 C-terminal segments. All cleavage sites, together with (minor) sites detected in undigested HAs, were situated in the linker region that connects the transmembrane domain to the ectodomain. In addition to cleavage at highly favorable amino acids, various alternative enzyme preferences were found that strongly depended on the HA subtype/type. We also evaluated the surface electrostatic potentials, binding cleft topographies and spatial dimensions of stem bromelain (homologically modeled) and subtilisin Carlsberg (X-ray resolved). The results show that the enzymes (∼45Å(3)) would hardly fit into the small (∼18-20Å) linker region of the HA-spike. However, the HA membrane proximal ectodomain region was predicted to be intrinsically disordered. We propose that its motions allow steric adjustment of the enzymes' active sites to the neck of the HA spike. The subtype/type-specific architectures in this region also influenced significantly the cleavage preferences of the enzymes.


Assuntos
Bromelaínas/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Mapeamento de Interação de Proteínas , Subtilisinas/metabolismo , Bromelaínas/química , Bromelaínas/genética , Biologia Computacional , Cristalografia por Raios X , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hidrólise , Modelos Biológicos , Modelos Moleculares , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Subtilisinas/química , Subtilisinas/genética
7.
Biochim Biophys Acta ; 1808(7): 1843-54, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21420932

RESUMO

Influenza virus hemagglutinin is a homotrimeric spike glycoprotein crucial for virions' attachment, membrane fusion, and assembly reactions. X-ray crystallography data are available for hemagglutinin ectodomains of various types/subtypes but not for anchoring segments. To get structural information for the linker and transmembrane regions of hemagglutinin, influenza A (H1-H16 subtypes except H8 and H15) and B viruses were digested with bromelain or subtilisin Carlsberg, either within virions or in non-ionic detergent micelles. Proteolytical fragments were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Within virions, hemagglutinins of most influenza A/Group-1 and type B virus strains were more susceptible to digestion with bromelain and/or subtilisin compared to A/Group-2 hemagglutinins. The cleavage sites were always located in the hemagglutinin linker sequence. In detergent, 1) bromelain cleaved hemagglutinin of every influenza A subtype in the linker region; 2) subtilisin cleaved Group-2 hemagglutinins in the linker region; 3) subtilisin cleaved Group-1 hemagglutinins in the transmembrane region; 4) both enzymes cleaved influenza B virus hemagglutinin in the transmembrane region. We propose that the A/Group-2 hemagglutinin linker and/or transmembrane regions are more tightly associated within trimers than type A/Group-1 and particularly type B ones. This hypothesis is underpinned by spatial trimeric structure modeling performed for transmembrane regions of both Group-1 and Group-2 hemagglutinin representatives. Differential S-acylation of the hemagglutinin C-terminal anchoring segment with palmitate/stearate residues possibly contributes to fine tuning of transmembrane trimer packing and stabilization since decreased stearate amount correlated with deeper digestion of influenza B and some A/Group-1 hemagglutinins.


Assuntos
Biopolímeros/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A/química , Vírus da Influenza B/química , Sequência de Aminoácidos , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza B/crescimento & desenvolvimento , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Protein Pept Lett ; 16(11): 1407-13, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19508215

RESUMO

The first attempt has been made to suggest a model of influenza A virus matrix M1 protein spatial structure and molecule orientation within a virion on the basis of tritium planigraphy data and theoretical prediction results. Limited in situ proteolysis of the intact virions with bromelain and surface plasmon resonance spectroscopy study of the M1 protein interaction with lipid coated surfaces were used for independent confirmation of the proposed model.


Assuntos
Vírus da Influenza A Subtipo H3N2/química , Proteínas da Matriz Viral/química , Vírion/química , Bromelaínas/metabolismo , Cristalografia por Raios X , Hemaglutininas Virais/química , Marcação por Isótopo , Cinética , Modelos Moleculares , Ressonância de Plasmônio de Superfície , Trítio , Vírion/metabolismo
9.
Virology ; 373(1): 61-71, 2008 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-18155742

RESUMO

We found that a 2-h incubation of potato virus X (PVX) virions in 10 mM Tris-HCl buffer pH 7.5 at -20 degrees C results in a strong but reversible drop in virion stability. Under these conditions, the PVX virions are completely disrupted by low (starting from 50 mM) concentrations of LiCl and CaCl(2) but not of NaCl. Incubation of PVX samples with 0.05-2 M LiCl at +4 degrees C did not result in virion disassembly and the virions were not disrupted upon incubation at -20 degrees C in 10 mM Tris-HCl buffer pH 7.5 without LiCl. We suggest that a 2-h incubation of the PVX virions at -20 degrees C in 10 mM Tris-HCl pH 7.5 results in a structural transition in the virus particles. A revised model of the three-dimensional organization of coat protein subunits in the PVX virions is proposed. This two-domain model explains better the high plasticity of the PVX CP structure.


Assuntos
Proteínas do Capsídeo , Modelos Químicos , Potexvirus/química , Vírion/química , Soluções Tampão , Varredura Diferencial de Calorimetria , Proteínas do Capsídeo/química , Proteínas do Capsídeo/isolamento & purificação , Proteínas do Capsídeo/metabolismo , Dicroísmo Circular , Fluorescência , Ácido Clorídrico/farmacologia , Potexvirus/metabolismo , Vírion/metabolismo , Virologia/métodos , Montagem de Vírus
10.
Protein Pept Lett ; 13(9): 907-13, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17100646

RESUMO

A method of isolation of hydrophobic membrane-bound C-terminal domain of influenza virus A hemagglutinin (HA) is suggested. The method is based on the insertion of HA into octylglucoside micelles followed by pepsin or thermolysin hydrolysis. Subsequent treatment of proteolytic digests with chloroform-hexafluoroisopropanol mixture resulted in the extraction of a few hydrophobic peptides into organic phase. Mass-spectrometry (MALDI-TOF) analysis revealed that the peptides with ion masses corresponding to the anchoring C-terminal domain with or without modifications predominated in the organic solution. The data obtained confirmed our speculation on the possibility of the suggested isolation scheme following from the strong interactions of anchoring domains in compact trimeric structure of HA spikes combined with micelle protection effect. Several appropriate peptides presence in the organic phase apparently arises from the presence of a few accessible proteolytic sites in HA transmembrane region.


Assuntos
Detergentes/química , Glucosídeos/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/isolamento & purificação , Vírus da Influenza A/química , Micelas , Sequência de Aminoácidos , Animais , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Dados de Sequência Molecular , Pepsina A/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Termolisina/metabolismo
11.
Eur J Biochem ; 271(15): 3136-45, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15265033

RESUMO

The primary structures of N-terminal 19-mer peptides, released by limited trypsin treatment of coat protein (CP) subunits in intact virions of three potato virus X (PVX) isolates, were analyzed. Two wild-type PVX strains, Russian (Ru) and British (UK3), were used and also the ST mutant of UK3 in which all 12 serine and threonine residues in the CP N-terminal segment were replaced by glycine or alanine. With the help of direct carbohydrate analysis and MS, it was found that the acetylated N-terminal peptides of both wild-type strains are glycosylated by a single monosaccharide residue (galactose or fucose) at NAcSer in the first position of the CP sequence, whereas the acetylated N-terminal segment of the ST mutant CP is unglycosylated. Fourier transform infrared spectra in the 1000-4000 cm(-1) region were measured for films of the intact and in situ trypsin-degraded PVX preparations at low and high humidity. These spectra revealed the presence of a broad-band in the region of valent vibrations of OH bonds (3100-3700 cm(-1)), which can be represented by superposition of three bands corresponding to tightly bound, weakly bound, and free OH groups. On calculating difference ('wet' minus 'dry') spectra, it was found that the intact wild-type PVX virions are characterized by high water-absorbing capacity and the ability to order a large number of water molecules on the virus particle. This effect was much weaker for the ST mutant and completely absent in the trypsin-treated PVX. It is proposed that the surface-located and glycosylated N-terminal CP segments of intact PVX virions induce the formation of a columnar-type shell from bound water molecules around the virions, which probably play a major role in maintaining the virion surface structure.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Potexvirus/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Vírion/metabolismo , Água/química , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Metabolismo dos Carboidratos , Carboidratos/análise , Carboidratos/química , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Glicosilação , Hidrólise , Dados de Sequência Molecular , Mutação/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Potexvirus/química , Subunidades Proteicas/genética , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier , Tripsina/metabolismo , Vírion/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA