RESUMO
Human rotaviruses attach to histo-blood group antigens glycans and null alleles of the ABO, FUT2 and FUT3 genes seem to confer diminished risk of gastroenteritis. Yet, the true extent of this protection remains poorly quantified. Here, we conducted a prospective study to evaluate the risk of consulting at the hospital in non-vaccinated pediatric patients according to the ABO, FUT2 (secretor) and FUT3 (Lewis) polymorphisms, in Metropolitan France and French Guiana. At both locations, P genotypes were largely dominated by P [8]-3, with P [6] cases exclusively found in French Guiana. The FUT2 null (nonsecretor) and FUT3 null (Lewis negative) phenotypes conferred near full protection against severe gastroenteritis due to P [8]-3 strains (OR 0.03, 95% CI [0.00-0.21] and 0.1, 95% CI [0.01-0.43], respectively in Metropolitan France; OR 0.08, 95% CI [0.01-0.52] and 0.14, 95%CI [0.01-0.99], respectively in French Guiana). Blood group O also appeared protective in Metropolitan France (OR 0.38, 95% CI [0.23-0.62]), but not in French Guiana. The discrepancy between the two locations was explained by a recruitment at the hospital of less severe cases in French Guiana than in Metropolitan France. Considering the frequencies of the null ABO, Secretor and Lewis phenotypes, the data indicate that in a Western European population, 34% (95% CI [29%; 39%]) of infants are genetically protected against rotavirus gastroenteritis of sufficient severity to lead to hospital visit.
RESUMO
The FUT2 α1,2fucosyltransferase contributes to the synthesis of fucosylated glycans used as attachment factors by several pathogens, including noroviruses and rotaviruses, that can induce life-threatening gastroenteritis in young children. FUT2 genetic polymorphisms impairing fucosylation are strongly associated with resistance to dominant strains of both noroviruses and rotaviruses. Interestingly, the wild-type allele associated with viral gastroenteritis susceptibility inversely appears to be protective against several inflammatory or autoimmune diseases for yet unclear reasons, although a FUT2 influence on microbiota composition has been observed. Here, we studied a cohort of young healthy adults and showed that the wild-type FUT2 allele was associated with the presence of anti-RVA antibodies, either neutralizing antibodies or serum IgA, confirming its association with the risk of RVA gastroenteritis. Strikingly, it was also associated with the frequency of gut microbiota-induced regulatory T cells (Tregs), so-called DP8α Tregs, albeit only in individuals who had anti-RVA neutralizing antibodies or high titers of anti-RVA IgAs. DP8α Tregs specifically recognize the human symbiont Faecalibacterium prausnitzii, which strongly supports their induction by this anti-inflammatory bacterium. The proportion of F. prausnitzii in feces was also associated with the FUT2 wild-type allele. These observations link the FUT2 genotype with the risk of RVA gastroenteritis, the microbiota and microbiota-induced DP8α Treg cells, suggesting that the anti-RVA immune response might involve an induction/expansion of these T lymphocytes later providing a balanced immunological state that confers protection against inflammatory diseases.
RESUMO
Since the beginning of the Coronavirus Disease-19 (COVID-19) pandemic, multiple Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mutations have been reported and led to the emergence of variants of concern (VOC) with increased transmissibility, virulence or immune escape. In parallel, the observation of viral fecal shedding led to the quantification of SARS-CoV-2 genomes in wastewater, providing information about the dynamics of SARS-CoV-2 infections within a population including symptomatic and asymptomatic individuals. Here, we aimed to adapt a sequencing technique initially designed for clinical samples to apply it to the challenging and mixed wastewater matrix, and hence identify the circulation of VOC at the community level. Composite raw sewage sampled over 24 h in two wastewater-treatment plants (WWTPs) from a city in western France were collected weekly and SARS-CoV-2 quantified by RT-PCR. Samples collected between October 2020 and May 2021 were submitted to whole-genome sequencing (WGS) using the primers and protocol published by the ARTIC Network and a MinION Mk1C sequencer (Oxford Nanopore Technologies, Oxford, United Kingdom). The protocol was adapted to allow near-full genome coverage from sewage samples, starting from â¼5% to reach â¼90% at depth 30. This enabled us to detect multiple single-nucleotide variant (SNV) and assess the circulation of the SARS-CoV-2 VOC Alpha, Beta, Gamma, and Delta. Retrospective analysis of sewage samples shed light on the emergence of the Alpha VOC with detection of first co-occurring signature mutations in mid-November 2020 to reach predominance of this variant in early February 2021. In parallel, a mutation-specific qRT-PCR assay confirmed the spread of the Alpha VOC but detected it later than WGS. Altogether, these data show that SARS-CoV-2 sequencing in sewage can be used for early detection of an emerging VOC in a population and confirm its ability to track shifts in variant predominance.
RESUMO
Group A rotaviruses, an important cause of severe diarrhea in children and young animals, initiate infection via interactions of the VP8* domain of the VP4 spike protein with cell surface sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is also used in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for the VP8* domain of WC3 and its reassortant strains have not yet been identified. In the present study, HBGA- and saliva-binding assays showed that both G6P[5] WC3 and mono-reassortant G4P[5] strains recognized the αGal HBGA. The infectivity of both P[5]-bearing strains was significantly reduced in αGal-free MA-104 cells by pretreatment with a broadly specific neuraminidase or by coincubation with the α2,6-linked SA-specific Sambucus nigra lectin, but not by the α2,3-linked specific sialidase or by Maackia amurensis lectin. Free NeuAc and the αGal trisaccharide also prevented the infectivity of both strains. This indicated that both P[5]-bearing strains utilize α2,6-linked SA as a ligand on MA104 cells. However, the two strains replicated in differentiated bovine small intestinal enteroids and in their human counterparts that lack α2,6-linked SA or αGal HBGA, suggesting that additional or alternative receptors such as integrins, hsp70, and tight-junction proteins bound directly to the VP5* domain can be used by the P[5]-bearing strains to initiate the infection of human cells. In addition, these data also suggested that P[5]-bearing strains have potential for cross-species transmission.IMPORTANCE Group A rotaviruses initiate infection through the binding of the VP8* domain of the VP4 protein to sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is used as the backbone in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for their P[5] VP8* domain has remained elusive. Using a variety of approaches, we demonstrated that the WC3 and bovine-human mono-reassortant G4P[5] vaccine strains recognize both α2,6-linked SA and αGal HBGA as ligands. Neither ligand is expressed on human small intestinal epithelial cells, explaining the absence of natural human infection by P[5]-bearing strains. However, we observed that the P[5]-bearing WC3 and G4P[5] RotaTeq vaccine strains could still infect human intestinal epithelial cells. Thus, the four P[5] RotaTeq vaccine strains potentially binding to additional alternative receptors may be efficient and effective in providing protection against severe rotavirus disease in human.
Assuntos
Proteínas do Capsídeo/imunologia , Rotavirus/imunologia , Rotavirus/metabolismo , Sequência de Aminoácidos/genética , Animais , Antígenos de Grupos Sanguíneos/metabolismo , Proteínas do Capsídeo/metabolismo , Bovinos/imunologia , Epitopos/metabolismo , Humanos , Ácido N-Acetilneuramínico/metabolismo , Receptores Virais/metabolismo , Infecções por Rotavirus/virologia , Vacinas contra Rotavirus/genética , Vacinas contra Rotavirus/metabolismo , Vacinas Atenuadas/genética , Vacinas Atenuadas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Ligação Viral , alfa-Galactosidase/metabolismoRESUMO
Human strains of rotavirus A (RVAs) recognize fucosylated glycans belonging to histo-blood group antigens (HBGAs) through their spike protein VP8*. Lack of these ligands due to genetic polymorphisms is associated with resistance to gastroenteritis caused by P[8] genotype RVAs. With the aim to delineate the contribution of HBGAs in the process, we analyzed the glycan specificity of VP8* proteins from various P genotypes. Binding to saliva of VP8* from P[8] and P[4] genotypes required expression of both FUT2 and FUT3 enzymes, whilst binding of VP8* from the P[14] genotype required FUT2 and A enzymes. We further defined a glycan motif, GlcNAcß3Galß4GlcNAc, recognized by P[6] clinical strains. Conversion into Lewis antigens by the FUT3 enzyme impaired recognition, explaining their lower binding to saliva of Lewis positive phenotype. In addition, the presence of neutralizing antibodies was associated with the presence of the FUT2 wild type allele in sera from young healthy adults. Nonetheless, in vitro infection of transformed cell lines was independent of HBGAs expression, indicating that HBGAs are not human RV receptors. The match between results from saliva-based binding assays and the epidemiological data indicates that the polymorphism of human HBGAs controls susceptibility to RVAs, although the exact mechanism remains unclear.
Assuntos
Antígenos de Grupos Sanguíneos , Gastroenterite , Proteínas de Ligação a RNA , Infecções por Rotavirus , Rotavirus , Proteínas não Estruturais Virais , Adolescente , Adulto , Animais , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/metabolismo , Células CACO-2 , Chlorocebus aethiops , Feminino , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Gastroenterite/genética , Gastroenterite/metabolismo , Gastroenterite/virologia , Humanos , Masculino , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Rotavirus/genética , Rotavirus/metabolismo , Infecções por Rotavirus/genética , Infecções por Rotavirus/metabolismo , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Galactosídeo 2-alfa-L-FucosiltransferaseRESUMO
Attachment to carbohydrates of the histo-blood group type of several human Rotavirus strains (RVA) has recently been described. Synthesis of these ligands requires a functional FUT2 enzyme, suggesting that FUT2 null homozygote (ie, nonsecretor) individuals may not be recognized by most human RVA strains. Whereas such individuals represent 20% of the control population, this retrospective study determined that none of 51 patients infected by P[8] rotavirus strains were nonsecretors. The lack of α1,2fucosylated carbohydrate motifs in the gut surface mucosa is thus associated with resistance to symptomatic infection and virus attachment to such motifs is essential to the infection process.