Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Tree Physiol ; 39(8): 1329-1341, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31100150

RESUMO

Tree ring synthesis is a key process in wood production; however, little is known of the origin and fate of the carbon involved. We used natural 13C abundance to investigate the carbon-use process for the ring development in a temperate deciduous (Quercus petraea (Matt.) Liebl.) and a Mediterranean evergreen (Quercus ilex L.) oak. The sapwood carbon reserves, phloem sucrose contents, stem respired CO2 efflux and their respective carbon isotope compositions (δ13C) were recorded over 1 year, in the native area of each species. The seasonal δ13C variation of the current year ring was determined in the total ring throughout the seasons, as well as in slices from the fully mature ring after the growth season (intra-ring pattern). Although the budburst dates of the two oaks were similar, the growth of Quercus ilex began 50 days later. Both species exhibited growth cessation during the hot and dry summer but only Q. ilex resumed in the autumn. In the deciduous oak, xylem starch storage showed clear variations during the radial growth. The intra-ring δ13C variations of the two species exhibited similar ranges, but contrasting patterns, with an early increase for Q. petraea. Comparison between δ13C of starch and total ring suggested that Q. petraea (but not Q. ilex) builds its rings using reserves during the first month of growth. Shifts in ring and soluble sugars δ13C suggested an interspecific difference in either the phloem unloading or the use of fresh assimilate inside the ring. A decrease in ring δ13C for both oaks between the end of the radial growth and the winter is attributed to a lignification of ring cell walls after stem increment. This study highlighted the differences in carbon-use during ring growth for evergreen and deciduous oaks, as well as the benefits of exploring the process using natural 13C abundance.


Assuntos
Quercus , Carbono , Estações do Ano , Árvores , Madeira
2.
Tree Physiol ; 31(10): 1076-87, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21990023

RESUMO

The ongoing global change could be an additional threat to the establishment and the long-term survival of Populus nigra L., an emblematic European riparian species. With the general aim of gaining insights into the adaptive potential of this species, we (i) quantified variations within and among three French P. nigra populations for key physiological attributes, i.e., water-use efficiency (assessed from bulk leaf carbon isotope discrimination, Δ(13)C), growth performance and related leaf traits, (ii) examined genotype and population by environment interactions, and (iii) explored the relationship between Δ(13)C and growth. Thirty genotypes were sampled in each of three naturally established populations and grown in two different sites, Orléans (ORL) and Guémené-Penfao (GMN). In ORL, two similar plots were established and different watering regimes were applied in order to test for the drought response. Significant variations were observed for all traits within and among populations irrespective of site and watering. Trait variation was larger within than among populations. The effect of drought was neither genotype- nor population-dependent, contrary to the effect of site. The population ranking was maintained in all sites and watering regimes for the two most complex traits: Δ(13)C and growth. Moreover, these two traits were unrelated, which indicates that (i) water-use efficiency and growth are largely uncoupled in this species, and (ii) the environmental factors driving genetic structuration for Δ(13)C and growth act independently. The large variations found within populations combined with the consistent differences among populations suggest a large adaptive potential for P. nigra.


Assuntos
Genótipo , Fenótipo , Folhas de Planta/metabolismo , Populus/crescimento & desenvolvimento , Água/fisiologia , Isótopos de Carbono/metabolismo , Secas , Meio Ambiente , França , Geografia , Populus/genética , Populus/metabolismo
3.
Plant Cell Environ ; 33(6): 900-13, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20082670

RESUMO

While there is currently intense effort to examine the (13)C signal of CO(2) evolved in the dark, less is known on the isotope composition of day-respired CO(2). This lack of knowledge stems from technical difficulties to measure the pure respiratory isotopic signal: day respiration is mixed up with photorespiration, and there is no obvious way to separate photosynthetic fractionation (pure c(i)/c(a) effect) from respiratory effect (production of CO(2) with a different delta(13)C value from that of net-fixed CO(2)) at the ecosystem level. Here, we took advantage of new simple equations, and applied them to sunflower canopies grown under low and high [CO(2)]. We show that whole mesocosm-respired CO(2) is slightly (13)C depleted in the light at the mesocosm level (by 0.2-0.8 per thousand), while it is slightly (13)C enriched in darkness (by 1.5-3.2 per thousand). The turnover of the respiratory carbon pool after labelling appears similar in the light and in the dark, and accordingly, a hierarchical clustering analysis shows a close correlation between the (13)C abundance in day- and night-evolved CO(2). We conclude that the carbon source for respiration is similar in the dark and in the light, but the metabolic pathways associated with CO(2) production may change, thereby explaining the different (12)C/(13)C respiratory fractionations in the light and in the dark.


Assuntos
Ritmo Circadiano/fisiologia , Helianthus/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Respiração Celular , Análise por Conglomerados , Escuridão , Marcação por Isótopo , Luz , Especificidade de Órgãos , Fotossíntese , Fatores de Tempo
4.
New Phytol ; 169(4): 765-77, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16441757

RESUMO

We examined the relationships among productivity, water use efficiency (WUE) and drought tolerance in 29 genotypes of Populus x euramericana (Populus deltoides x Populus nigra), and investigated whether some leaf traits could be used as predictors for productivity, WUE and drought tolerance. At Orléans, France, drought was induced on one field plot by withholding water, while a second plot remained irrigated and was used as a control. Recorded variables included stem traits (e.g. biomass) and leaf structural (e.g. leaf area) and functional traits [e.g. intrinsic water use efficiency (Wi) and carbon isotope discrimination (Delta)]. Productivity and Delta displayed large genotypic variability and were not correlated. Delta scaled negatively with Wi and positively with stomatal conductance under moderate drought, suggesting that the diversity for Delta was mainly driven by stomatal conductance. Most of the productive genotypes displayed a low level of drought tolerance (i.e. a large reduction of biomass), while the less productive genotypes presented a large range of drought tolerance. The ability to increase WUE in response to water deficit was necessary but not sufficient to explain the genotypic diversity of drought tolerance.


Assuntos
Populus/crescimento & desenvolvimento , Populus/genética , Água/metabolismo , Biomassa , Carbono/metabolismo , Cruzamentos Genéticos , Desidratação , Variação Genética , Genótipo , Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Populus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA