Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 20(1): 203, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538539

RESUMO

BACKGROUND: Tanimilast is a novel and selective inhaled inhibitor of phosphodiesterase-4 in advanced clinical development for chronic obstructive pulmonary disease (COPD). Tanimilast is known to exert prominent anti-inflammatory activity when tested in preclinical experimental models as well as in human clinical studies. Recently, we have demonstrated that it also finely tunes, rather than suppressing, the cytokine network secreted by activated dendritic cells (DCs). This study was designed to characterize the effects of tanimilast on T-cell polarizing properties of DCs and to investigate additional functional and phenotypical features induced by tanimilast. METHODS: DCs at day 6 of culture were stimulated with LPS in the presence or absence of tanimilast or the control drug budesonide. After 24 h, DCs were analyzed for the expression of surface markers of maturation and activation by flow cytometry and cocultured with T cells to investigate cell proliferation and activation/polarization. The regulation of type 2-skewing mediators was investigated by real-time PCR in DCs and compared to results obtained in vivo in a randomized placebo-controlled trial on COPD patients treated with tanimilast. RESULTS: Our results show that both tanimilast and budesonide reduced the production of the immunostimulatory cytokine IFN-γ by CD4+ T cells. However, the two drugs acted at different levels since budesonide mainly blocked T cell proliferation, while tanimilast skewed T cells towards a Th2 phenotype without affecting cell proliferation. In addition, only DCs matured in the presence of tanimilast displayed increased CD86/CD80 ratio and CD141 expression, which correlated with Th2 T cell induction and dead cell uptake respectively. These cells also upregulated cAMP-dependent immunosuppressive molecules such as IDO1, TSP1, VEGF-A and Amphiregulin. Notably, the translational value of these data was confirmed by the finding that these same genes were upregulated also in sputum cells of COPD patients treated with tanimilast as add-on to inhaled glucocorticoids and bronchodilators. CONCLUSION: Taken together, these findings demonstrate distinct immunomodulatory properties of tanimilast associated with a type 2 endotype and CD141 upregulation in DCs and provide a mechanistic rationale for the administration of tanimilast on top of inhaled corticosteroids.


Assuntos
Inibidores da Fosfodiesterase 4 , Doença Pulmonar Obstrutiva Crônica , Trombomodulina , Budesonida/farmacologia , Budesonida/uso terapêutico , Células Cultivadas , Citocinas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Humanos , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/imunologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Trombomodulina/imunologia , Regulação para Cima/efeitos dos fármacos
2.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563373

RESUMO

Neutrophils, the most abundant subset of leukocytes in the blood, play a pivotal role in host response against invading pathogens. However, in respiratory diseases, excessive infiltration and activation of neutrophils can lead to tissue damage. Tanimilast-international non-proprietary name of CHF6001-is a novel inhaled phosphodiesterase 4 (PDE4) inhibitor in advanced clinical development for the treatment of chronic obstructive pulmonary disease (COPD), a chronic inflammatory lung disease where neutrophilic inflammation plays a key pathological role. Human neutrophils from healthy donors were exposed to pro-inflammatory stimuli in the presence or absence of tanimilast and budesonide-a typical inhaled corticosteroid drug-to investigate the modulation of effector functions including adherence to endothelial cells, granule protein exocytosis, release of extracellular DNA traps, cytokine secretion, and cell survival. Tanimilast significantly decreased neutrophil-endothelium adhesion, degranulation, extracellular DNA traps casting, and cytokine secretion. In contrast, it promoted neutrophil survival by decreasing both spontaneous apoptosis and cell death in the presence of pro-survival factors. The present work suggests that tanimilast can alleviate the severe tissue damage caused by massive recruitment and activation of neutrophils in inflammatory diseases such as COPD.


Assuntos
Neutrófilos , Doença Pulmonar Obstrutiva Crônica , Sulfonamidas , para-Aminobenzoatos , Citocinas/metabolismo , Células Endoteliais/metabolismo , Armadilhas Extracelulares/metabolismo , Humanos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/patologia , Sulfonamidas/uso terapêutico , para-Aminobenzoatos/uso terapêutico
3.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34375313

RESUMO

The inflammatory and IFN pathways of innate immunity play a key role in the resistance and pathogenesis of coronavirus disease 2019 (COVID-19). Innate sensors and SARS-CoV-2-associated molecular patterns (SAMPs) remain to be completely defined. Here, we identified single-stranded RNA (ssRNA) fragments from the SARS-CoV-2 genome as direct activators of endosomal TLR7/8 and MyD88 pathway. The same sequences induced human DC activation in terms of phenotype and function, such as IFN and cytokine production and Th1 polarization. A bioinformatic scan of the viral genome identified several hundreds of fragments potentially activating TLR7/8, suggesting that products of virus endosomal processing potently activate the IFN and inflammatory responses downstream of these receptors. In vivo, SAMPs induced MyD88-dependent lung inflammation characterized by accumulation of proinflammatory and cytotoxic mediators and immune cell infiltration, as well as splenic DC phenotypical maturation. These results identified TLR7/8 as a crucial cellular sensor of ssRNAs encoded by SARS-CoV-2 involved in host resistance and the disease pathogenesis of COVID-19.


Assuntos
COVID-19/virologia , Imunidade Inata , RNA Viral/análise , SARS-CoV-2/genética , Receptor 7 Toll-Like/imunologia , COVID-19/genética , COVID-19/imunologia , Humanos , Pulmão/virologia , SARS-CoV-2/imunologia
4.
Front Immunol ; 12: 797390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35140709

RESUMO

Phosphodiesterase 4 (PDE4) inhibitors are immunomodulatory drugs approved to treat diseases associated with chronic inflammatory conditions, such as COPD, psoriasis and atopic dermatitis. Tanimilast (international non-proprietary name of CHF6001) is a novel, potent and selective inhaled PDE4 inhibitor in advanced clinical development for the treatment of COPD. To begin testing its potential in limiting hyperinflammation and immune dysregulation associated to SARS-CoV-2 infection, we took advantage of an in vitro model of dendritic cell (DC) activation by SARS-CoV-2 genomic ssRNA (SCV2-RNA). In this context, Tanimilast decreased the release of pro-inflammatory cytokines (TNF-α and IL-6), chemokines (CCL3, CXCL9, and CXCL10) and of Th1-polarizing cytokines (IL-12, type I IFNs). In contrast to ß-methasone, a reference steroid anti-inflammatory drug, Tanimilast did not impair the acquisition of the maturation markers CD83, CD86 and MHC-II, nor that of the lymph node homing receptor CCR7. Consistent with this, Tanimilast did not reduce the capability of SCV2-RNA-stimulated DCs to activate CD4+ T cells but skewed their polarization towards a Th2 phenotype. Both Tanimilast and ß-methasone blocked the increase of MHC-I molecules in SCV2-RNA-activated DCs and restrained the proliferation and activation of cytotoxic CD8+ T cells. Our results indicate that Tanimilast can modulate the SCV2-RNA-induced pro-inflammatory and Th1-polarizing potential of DCs, crucial regulators of both the inflammatory and immune response. Given also the remarkable safety demonstrated by Tanimilast, up to now, in clinical studies, we propose this inhaled PDE4 inhibitor as a promising immunomodulatory drug in the scenario of COVID-19.


Assuntos
COVID-19/imunologia , Células Dendríticas , Inibidores da Fosfodiesterase 4/farmacologia , RNA/farmacologia , SARS-CoV-2/fisiologia , Ativação Viral/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Humanos , Células Th1/imunologia , Células Th2/imunologia , Ativação Viral/imunologia , Tratamento Farmacológico da COVID-19
5.
Front Cell Dev Biol ; 8: 615031, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363177

RESUMO

CCRL2 is a seven-transmembrane domain receptor that belongs to the chemokine receptor family. At difference from other members of this family, CCRL2 does not promote chemotaxis and shares structural features with atypical chemokine receptors (ACKRs). However, CCRL2 also differs from ACKRs since it does not bind chemokines and is devoid of scavenging functions. The only commonly recognized CCRL2 ligand is chemerin, a non-chemokine chemotactic protein. CCRL2 is expressed both by leukocytes and non-hematopoietic cells. The genetic ablation of CCRL2 has been instrumental to elucidate the role of this receptor as positive or negative regulator of inflammation. CCRL2 modulates leukocyte migration by two main mechanisms. First, when CCRL2 is expressed by barrier cells, such endothelial, and epithelial cells, it acts as a presenting molecule, contributing to the formation of a non-soluble chemotactic gradient for leukocytes expressing CMKLR1, the functional chemerin receptor. This mechanism was shown to be crucial in the induction of NK cell-dependent immune surveillance in lung cancer progression and metastasis. Second, by forming heterocomplexes with other chemokine receptors. For instance, CCRL2/CXCR2 heterodimers were shown to regulate the activation of ß2-integrins in mouse neutrophils. This mini-review summarizes the current understanding of CCRL2 biology, based on experimental evidence obtained by the genetic deletion of this receptor in in vivo experimental models. Further studies are required to highlight the complex functional role of CCRL2 in different organs and pathological conditions.

6.
Int J Mol Sci ; 21(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486257

RESUMO

Dendritic cells (DCs) constitute a complex network of cell subsets with common functions but also with many divergent aspects. All dendritic cell subsets share the ability to prime T cell response and to undergo a complex trafficking program related to their stage of maturation and function. For these reasons, dendritic cells are implicated in a large variety of both protective and detrimental immune responses, including a crucial role in promoting anti-tumor responses. Although cDC1s are the most potent subset in tumor antigen cross-presentation, they are not sufficient to induce full-strength anti-tumor cytotoxic T cell response and need close interaction and cooperativity with the other dendritic cell subsets, namely cDC2s and pDCs. This review will take into consideration different aspects of DC biology, including the functional role of dendritic cell subsets in both fostering and suppressing tumor growth, the mechanisms underlying their recruitment into the tumor microenvironment, as well as the prognostic value and the potentiality of dendritic cell therapeutic targeting. Understanding the specificity of dendritic cell subsets will allow to gain insights on role of these cells in pathological conditions and to design new selective promising therapeutic approaches.


Assuntos
Células Dendríticas/imunologia , Neoplasias/patologia , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos de Neoplasias/imunologia , Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Movimento Celular , Quimiocinas/imunologia , Citocinas/imunologia , Progressão da Doença , Homeostase , Humanos , Imunofenotipagem , Imunossupressores/farmacologia , Imunoterapia , Camundongos , Neoplasias/imunologia , Prognóstico , Resultado do Tratamento , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA