Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Front Nutr ; 11: 1346483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812941

RESUMO

Anxiety disorders disproportionally affect females and are frequently comorbid with eating disorders. With the emerging field of nutritional psychiatry, focus has been put on the impact of diet quality in anxiety pathophysiology and gut microbiome underlying mechanisms. While the relationship between diet and anxiety is bidirectional, improving dietary habits could better facilitate the actions of pharmacological and psychological therapies, or prevent their use. A better understanding of how gut bacteria mediate and moderate such relationship could further contribute to develop personalized programs and inform probiotics and prebiotics manufacturing. To date, studies that look simultaneously at diet, the gut microbiome, and anxiety are missing as only pairwise relationships among them have been investigated. Therefore, this study aims at summarizing and integrating the existing knowledge on the dietary effects on anxiety with focus on gut microbiome. Findings on the effects of diet on anxiety are critically summarized and reinterpreted in relation to findings on (i) the effects of diet on the gut microbiome composition, and (ii) the associations between the abundance of certain gut bacteria and anxiety. This novel interpretation suggests a theoretical model where the relationship between diet and anxiety is mediated and/or modulated by the gut microbiome through multiple mechanisms. In parallel, this study critically evaluates methodologies employed in the nutritional field to investigate the effects of diet on anxiety highlighting a lack of systematic operationalization and assessment strategies. Therefore, it ultimately proposes a novel evidence-based approach that can enhance studies validity, reliability, systematicity, and translation to clinical and community settings.

2.
Clin Transl Med ; 14(3): e1626, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38500390

RESUMO

The interplay between the immune system and the metabolic state of a cell is intricate. In all phases of an immune response, the corresponding metabolic changes shall occur to support its modulation, in addition to the signalling through the cytokine environment and immune receptor stimulation. While autoimmune disorders may develop because of a metabolic imbalance that modulates switching between T-cell phenotypes, the effects that the interaction between T and B cells have on one another's cellular metabolism are yet to be understood in disease context. Here, we propose a perspective which highlights the potential of targeting metabolism to modulate T- and B-cell subtypes populations as well as T-B and B-T cell interactions to successfully treat autoimmune disorders. Specifically, we envision how metabolic changes can tip the balance of immune cells interactions, through definite mechanisms in both health and disease, to explain phenotype switches of B and T cells. Within this scenario, we highlight targeting metabolism that link inflammation, immunometabolism, epigenetics and ageing, is critical to understand inflammatory disorders. The combination of treatments targeting immune cells that cause (T/B) cell phenotype imbalances, and the metabolic pathways involved, may increase the effectiveness of treatment of autoimmune disorders, and/or ameliorate their symptoms to improve patients' quality of life.


Assuntos
Doenças Autoimunes , Qualidade de Vida , Humanos , Doenças Autoimunes/metabolismo , Linfócitos T/metabolismo , Fenótipo , Comunicação Celular
3.
Front Microbiol ; 14: 1270487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886071

RESUMO

Coordination of cell cycle with metabolism exists in all cell types that grow by division. It serves to build a new cell, (i) fueling building blocks for the synthesis of proteins, nucleic acids, and membranes, and (ii) producing energy through glycolysis. Cyclin-dependent kinases (Cdks) play an essential role in this coordination, thereby in the regulation of cell division. Cdks are functional homologs across eukaryotes and are the engines that drive cell cycle events and the clocks that time them. Their function is counteracted by stoichiometric inhibitors; specifically, inhibitors of cyclin-cyclin dependent kinase (cyclin/Cdk) complexes allow for their activity at specific times. Here, we provide a new perspective about the yet unknown cell cycle mechanisms impacting on metabolism. We first investigated the effect of the mitotic cyclin/Cdk1 complex Cyclin B/Cdk1-functional homolog in mammalian cells of the budding yeast Clb2/Cdk1-on yeast metabolic enzymes of, or related to, the glycolysis pathway. Six glycolytic enzymes (Glk1, Hxk2, Pgi1, Fba1, Tdh1, and Pgk1) were subjected to in vitro Cdk-mediated phosphorylation assays. Glucose-6-phosphate dehydrogenase (Zwf1), the first enzyme in the pentose phosphate pathway that is important for NADPH production, and 6-phospho-fructo-2-kinase (Pfk27), which catalyzes fructose-2,6-bisphosphate synthesis, a key regulator of glycolysis, were also included in the study. We found that, among these metabolic enzymes, Fba1 and Pgk1 may be phosphorylated by Cdk1, in addition to the known Cdk1-mediated phosphorylation of Gph1. We then investigated the possible effect of Sic1, stoichiometric inhibitor of mitotic cyclin/Cdk1 complexes in budding yeast, on the activities of three most relevant glycolytic enzymes: Hxk2, Glk1, and Tdh1. We found that Sic1 may have a negative effect on Hxk2. Altogether, we reveal possible new routes, to be further explored, through which cell cycle may regulate cellular metabolism. Because of the functional homology of cyclin/Cdk complexes and their stoichiometric inhibitors across evolution, our findings may be relevant for the regulation of cell division in eukaryotes.

4.
Front Microbiol ; 14: 1187304, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396387

RESUMO

Coordination of cell cycle and metabolism exists in all cells. The building of a new cell is a process that requires metabolic commitment to the provision of both Gibbs energy and building blocks for proteins, nucleic acids, and membranes. On the other hand, the cell cycle machinery will assess and regulate its metabolic environment before it makes decisions on when to enter the next cell cycle phase. Furthermore, more and more evidence demonstrate that the metabolism can be regulated by cell cycle progression, as different biosynthesis pathways are preferentially active in different cell cycle phases. Here, we review the available literature providing a critical overview on how cell cycle and metabolism may be coupled with one other, bidirectionally, in the budding yeast Saccharomyces cerevisiae.

5.
Clin Transl Med ; 12(7): e898, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35904141

RESUMO

Increasing efforts points to the understanding of how to maximize the capabilities of the adaptive immune system to fight against the development of immune and inflammatory disorders. Here we focus on the role of T cells as immune cells which subtype imbalance may lead to disease onset. Specifically, we propose that autoimmune disorders may develop as a consequence of a metabolic imbalance that modulates switching between T cell phenotypes. We highlight a Systems Biology strategy that integrates computational metabolic modelling with experimental data to investigate the metabolic requirements of T cell phenotypes, and to predict metabolic genes that may be targeted in autoimmune inflammatory diseases. Thus, we propose a new perspective of targeting T cell metabolism to modulate the immune response and prevent T cell phenotype imbalance, which may help to repurpose already existing drugs targeting metabolism for therapeutic treatment.


Assuntos
Doenças Autoimunes , Linfócitos T , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/genética , Humanos , Imunidade , Fenótipo , Biologia de Sistemas , Linfócitos T/metabolismo
6.
Comput Struct Biotechnol J ; 20: 1743-1751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495119

RESUMO

Transcription factors are regulators of the cell's genomic landscape. By switching single genes or entire molecular pathways on or off, transcription factors modulate the precise timing of their activation. The Forkhead (Fkh) transcription factors are evolutionarily conserved to regulate organismal physiology and cell division. In addition to molecular biology and biochemical efforts, genome-wide studies have been conducted to characterize the genomic landscape potentially regulated by Forkheads in eukaryotes. Here, we discuss and interpret findings reported in six genome-wide Chromatin ImmunoPrecipitation (ChIP) studies, with a particular focus on ChIP-chip and ChIP-exo. We highlight their power and challenges to address Forkhead-mediated regulation of the cellular landscape in budding yeast. Expression changes of the targets identified in the binding assays are investigated by taking expression data for Forkhead deletion and overexpression into account. Forkheads are revealed as regulators of the metabolic network through which cell cycle dynamics may be temporally coordinated further, in addition to their well-known role as regulators of the gene cluster responsible for cell division.

7.
Front Plant Sci ; 13: 857745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444668

RESUMO

The final shape and size of plant organs are determined by a network of genes that modulate cell proliferation and expansion. Among those, SCI1 (Stigma/style Cell-cycle Inhibitor 1) functions by inhibiting cell proliferation during pistil development. Alterations in SCI1 expression levels can lead to remarkable stigma/style size changes. Recently, we demonstrated that SCI1 starts to be expressed at the specification of the Nicotiana tabacum floral meristem and is expressed at all floral meristematic cells. To elucidate how SCI1 regulates cell proliferation, we screened a stigma/style cDNA library through the yeast two-hybrid (Y2H) system, using SCI1 as bait. Among the interaction partners, we identified the 14-3-3D protein of the Non-Epsilon group. The interaction between SCI1 and 14-3-3D was confirmed by pulldown and co-immunoprecipitation experiments. 14-3-3D forms homo- and heterodimers in the cytoplasm of plant cells and interacts with SCI1 in the nucleus, as demonstrated by Bimolecular Fluorescence Complementation (BiFC). Analyses of SCI1-GFP fluorescence through the cell-cycle progression revealed its presence in the nucleoli during interphase and prophase. At metaphase, SCI1-GFP fluorescence faded and was no longer detected at anaphase, reappearing at telophase. Upon treatment with the 26S proteasome inhibitor MG132, SCI1-GFP was stabilized during cell division. Site-directed mutagenesis of seven serines into alanines in the predicted 14-3-3 binding sites on the SCI1 sequence prevented its degradation during mitosis. Our results demonstrate that SCI1 degradation at the beginning of metaphase is dependent on the phosphorylation of serine residues and on the action of the 26S proteasome. We concluded that SCI1 stability/degradation is cell-cycle regulated, consistent with its role in fine-tuning cell proliferation.

8.
NPJ Syst Biol Appl ; 7(1): 48, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903735

RESUMO

Networks of interacting molecules organize topology, amount, and timing of biological functions. Systems biology concepts required to pin down 'network motifs' or 'design principles' for time-dependent processes have been developed for the cell division cycle, through integration of predictive computer modeling with quantitative experimentation. A dynamic coordination of sequential waves of cyclin-dependent kinases (cyclin/Cdk) with the transcription factors network offers insights to investigate how incompatible processes are kept separate in time during the eukaryotic cell cycle. Here this coordination is discussed for the Forkhead transcription factors in light of missing gaps in the current knowledge of cell cycle control in budding yeast. An emergent design principle is proposed where cyclin waves are synchronized by a cyclin/Cdk-mediated feed-forward regulation through the Forkhead as a transcriptional timer. This design is rationalized by the bidirectional interaction between mitotic cyclins and the Forkhead transcriptional timer, resulting in an autonomous oscillator that may be instrumental for a well-timed progression throughout the cell cycle. The regulation centered around the cyclin/Cdk-Forkhead axis can be pivotal to timely coordinate cell cycle dynamics, thereby to actuate the quantitative model of Cdk control.


Assuntos
Ciclinas , Saccharomycetales , Pontos de Checagem do Ciclo Celular , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
9.
Front Immunol ; 12: 734282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616402

RESUMO

Germinal center (GC) reactions are vital to the correct functioning of the adaptive immune system, through formation of high affinity, class switched antibodies. GCs are transient anatomical structures in secondary lymphoid organs where specific B cells, after recognition of antigen and with T cell help, undergo class switching. Subsequently, B cells cycle between zones of proliferation and somatic hypermutation and zones where renewed antigen acquisition and T cell help allows for selection of high affinity B cells (affinity maturation). Eventually GC B cells first differentiate into long-lived memory B cells (MBC) and finally into plasma cells (PC) that partially migrate to the bone marrow to encapsulate into long-lived survival niches. The regulation of GC reactions is a highly dynamically coordinated process that occurs between various cells and molecules that change in their signals. Here, we present a system-level perspective of T cell-mediated GC B cell differentiation, presenting and discussing the experimental and computational efforts on the regulation of the GCs. We aim to integrate Systems Biology with B cell biology, to advance elucidation of the regulation of high-affinity, class switched antibody formation, thus to shed light on the delicate functioning of the adaptive immune system. Specifically, we: i) review experimental findings of internal and external factors driving various GC dynamics, such as GC initiation, maturation and GCBC fate determination; ii) draw comparisons between experimental observations and mathematical modeling investigations; and iii) discuss and reflect on current strategies of modeling efforts, to elucidate B cell behavior during the GC tract. Finally, perspectives are specifically given on to the areas where a Systems Biology approach may be useful to predict novel GCBC-T cell interaction dynamics.


Assuntos
Linfócitos B/imunologia , Comunicação Celular , Diferenciação Celular , Centro Germinativo/imunologia , Ativação Linfocitária , Modelos Imunológicos , Biologia de Sistemas , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos B/metabolismo , Proliferação de Células , Centro Germinativo/citologia , Centro Germinativo/metabolismo , Humanos , Fenótipo , Linfócitos T Auxiliares-Indutores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
PLoS Comput Biol ; 17(8): e1009209, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343169

RESUMO

Immune responses rely on a complex adaptive system in which the body and infections interact at multiple scales and in different compartments. We developed a modular model of CD4+ T cells, which uses four modeling approaches to integrate processes at three spatial scales in different tissues. In each cell, signal transduction and gene regulation are described by a logical model, metabolism by constraint-based models. Cell population dynamics are described by an agent-based model and systemic cytokine concentrations by ordinary differential equations. A Monte Carlo simulation algorithm allows information to flow efficiently between the four modules by separating the time scales. Such modularity improves computational performance and versatility and facilitates data integration. We validated our technology by reproducing known experimental results, including differentiation patterns of CD4+ T cells triggered by different combinations of cytokines, metabolic regulation by IL2 in these cells, and their response to influenza infection. In doing so, we added multi-scale insights to single-scale studies and demonstrated its predictive power by discovering switch-like and oscillatory behaviors of CD4+ T cells that arise from nonlinear dynamics interwoven across three scales. We identified the inflamed lymph node's ability to retain naive CD4+ T cells as a key mechanism in generating these emergent behaviors. We envision our model and the generic framework encompassing it to serve as a tool for understanding cellular and molecular immunological problems through the lens of systems immunology.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções/imunologia , Modelos Imunológicos , Imunidade Adaptativa , Algoritmos , Linfócitos T CD4-Positivos/metabolismo , Biologia Computacional , Simulação por Computador , Citocinas/imunologia , Humanos , Infecções/genética , Infecções/metabolismo , Influenza Humana/imunologia , Método de Monte Carlo , Dinâmica não Linear , Análise Espaço-Temporal , Análise de Sistemas , Biologia de Sistemas
11.
Bioinformatics ; 37(21): 3702-3706, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34179955

RESUMO

Computational models of biological systems can exploit a broad range of rapidly developing approaches, including novel experimental approaches, bioinformatics data analysis, emerging modelling paradigms, data standards and algorithms. A discussion about the most recent advances among experts from various domains is crucial to foster data-driven computational modelling and its growing use in assessing and predicting the behaviour of biological systems. Intending to encourage the development of tools, approaches and predictive models, and to deepen our understanding of biological systems, the Community of Special Interest (COSI) was launched in Computational Modelling of Biological Systems (SysMod) in 2016. SysMod's main activity is an annual meeting at the Intelligent Systems for Molecular Biology (ISMB) conference, which brings together computer scientists, biologists, mathematicians, engineers, computational and systems biologists. In the five years since its inception, SysMod has evolved into a dynamic and expanding community, as the increasing number of contributions and participants illustrate. SysMod maintains several online resources to facilitate interaction among the community members, including an online forum, a calendar of relevant meetings and a YouTube channel with talks and lectures of interest for the modelling community. For more than half a decade, the growing interest in computational systems modelling and multi-scale data integration has inspired and supported the SysMod community. Its members get progressively more involved and actively contribute to the annual COSI meeting and several related community workshops and meetings, focusing on specific topics, including particular techniques for computational modelling or standardisation efforts.


Assuntos
Biologia Computacional , Biologia de Sistemas , Humanos , Simulação por Computador , Algoritmos , Análise de Dados
12.
NPJ Syst Biol Appl ; 7(1): 28, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117265

RESUMO

In budding yeast, synchronization of waves of mitotic cyclins that activate the Cdk1 kinase occur through Forkhead transcription factors. These molecules act as controllers of their sequential order and may account for the separation in time of incompatible processes. Here, a Forkhead-mediated design principle underlying the quantitative model of Cdk control is proposed for budding yeast. This design rationalizes timing of cell division, through progressive and coordinated cyclin/Cdk-mediated phosphorylation of Forkhead, and autonomous cyclin/Cdk oscillations. A "clock unit" incorporating this design that regulates timing of cell division is proposed for both yeast and mammals, and has a DRIVER operating the incompatible processes that is instructed by multiple CLOCKS. TIMERS determine whether the clocks are active, whereas CONTROLLERS determine how quickly the clocks shall function depending on external MODULATORS. This "clock unit" may coordinate temporal waves of cyclin/Cdk concentration/activity in the eukaryotic cell cycle making the driver operate the incompatible processes, at separate times.


Assuntos
Quinases Ciclina-Dependentes , Células Eucarióticas , Animais , Ciclo Celular , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Células Eucarióticas/metabolismo , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
13.
Biology (Basel) ; 10(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806509

RESUMO

Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.

14.
NPJ Syst Biol Appl ; 7(1): 4, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483502

RESUMO

CD4+ T cells provide adaptive immunity against pathogens and abnormal cells, and they are also associated with various immune-related diseases. CD4+ T cells' metabolism is dysregulated in these pathologies and represents an opportunity for drug discovery and development. Genome-scale metabolic modeling offers an opportunity to accelerate drug discovery by providing high-quality information about possible target space in the context of a modeled disease. Here, we develop genome-scale models of naïve, Th1, Th2, and Th17 CD4+ T-cell subtypes to map metabolic perturbations in rheumatoid arthritis, multiple sclerosis, and primary biliary cholangitis. We subjected these models to in silico simulations for drug response analysis of existing FDA-approved drugs and compounds. Integration of disease-specific differentially expressed genes with altered reactions in response to metabolic perturbations identified 68 drug targets for the three autoimmune diseases. In vitro experimental validation, together with literature-based evidence, showed that modulation of fifty percent of identified drug targets suppressed CD4+ T cells, further increasing their potential impact as therapeutic interventions. Our approach can be generalized in the context of other diseases, and the metabolic models can be further used to dissect CD4+ T-cell metabolism.


Assuntos
Biologia Computacional/métodos , Doenças do Sistema Imunitário/tratamento farmacológico , Biologia de Sistemas/métodos , Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Humanos , Doenças do Sistema Imunitário/genética , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia
15.
NPJ Syst Biol Appl ; 6(1): 34, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106503

RESUMO

How the network around ROS protects against oxidative stress and Parkinson's disease (PD), and how processes at the minutes timescale cause disease and aging after decades, remains enigmatic. Challenging whether the ROS network is as complex as it seems, we built a fairly comprehensive version thereof which we disentangled into a hierarchy of only five simpler subnetworks each delivering one type of robustness. The comprehensive dynamic model described in vitro data sets from two independent laboratories. Notwithstanding its five-fold robustness, it exhibited a relatively sudden breakdown, after some 80 years of virtually steady performance: it predicted aging. PD-related conditions such as lack of DJ-1 protein or increased α-synuclein accelerated the collapse, while antioxidants or caffeine retarded it. Introducing a new concept (aging-time-control coefficient), we found that as many as 25 out of 57 molecular processes controlled aging. We identified new targets for "life-extending interventions": mitochondrial synthesis, KEAP1 degradation, and p62 metabolism.


Assuntos
Envelhecimento , Modelos Biológicos , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Medicina de Precisão , Espécies Reativas de Oxigênio/metabolismo , Biologia Computacional , Humanos , Terapia de Alvo Molecular , Estresse Oxidativo , Doença de Parkinson/fisiopatologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-32850764

RESUMO

Computer-aided design (CAD) for synthetic biology promises to accelerate the rational and robust engineering of biological systems. It requires both detailed and quantitative mathematical and experimental models of the processes to (re)design biology, and software and tools for genetic engineering and DNA assembly. Ultimately, the increased precision in the design phase will have a dramatic impact on the production of designer cells and organisms with bespoke functions and increased modularity. CAD strategies require quantitative models of cells that can capture multiscale processes and link genotypes to phenotypes. Here, we present a perspective on how whole-cell, multiscale models could transform design-build-test-learn cycles in synthetic biology. We show how these models could significantly aid in the design and learn phases while reducing experimental testing by presenting case studies spanning from genome minimization to cell-free systems. We also discuss several challenges for the realization of our vision. The possibility to describe and build whole-cells in silico offers an opportunity to develop increasingly automatized, precise and accessible CAD tools and strategies.

17.
NPJ Syst Biol Appl ; 6(1): 8, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245958

RESUMO

Some biological networks exhibit oscillations in their components to convert stimuli to time-dependent responses. The eukaryotic cell cycle is such a case, being governed by waves of cyclin-dependent kinase (cyclin/Cdk) activities that rise and fall with specific timing and guarantee its timely occurrence. Disruption of cyclin/Cdk oscillations could result in dysfunction through reduced cell division. Therefore, it is of interest to capture properties of network designs that exhibit robust oscillations. Here we show that a minimal yeast cell cycle network is able to oscillate autonomously, and that cyclin/Cdk-mediated positive feedback loops (PFLs) and Clb3-centered regulations sustain cyclin/Cdk oscillations, in known and hypothetical network designs. We propose that Clb3-mediated coordination of cyclin/Cdk waves reconciles checkpoint and oscillatory cell cycle models. Considering the evolutionary conservation of the cyclin/Cdk network across eukaryotes, we hypothesize that functional ("healthy") phenotypes require the capacity to oscillate autonomously whereas dysfunctional (potentially "diseased") phenotypes may lack this capacity.


Assuntos
Relógios Biológicos/fisiologia , Ciclina B/metabolismo , Ciclinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/fisiologia , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular , Ciclina B/genética , Ciclina B/fisiologia , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Modelos Biológicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Biologia de Sistemas/métodos
18.
Methods Mol Biol ; 2049: 365-385, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602622

RESUMO

Biological functions require a coherent cross talk among multiple layers of regulation within the cell. Computational efforts that aim to understand how these layers are integrated across spatial, temporal, and functional scales represent a challenge in Systems Biology. We have developed a computational, multi-scale framework that couples cell cycle and metabolism networks in the budding yeast cell. Here we describe the methodology at the basis of this framework, which integrates on off-the-shelf logical (Boolean) models of a minimal yeast cell cycle with a constraint-based model of metabolism (i.e., the Yeast 7 metabolic network reconstruction). Models are implemented in Python code using the BooleanNet and COBRApy packages, respectively, and are connected through the Boolean logic. The methodology allows for incorporation of interaction data, and validation through -omics data. Furthermore, evolutionary strategies may be incorporated to explore regulatory structures underlying coherent cross talks among regulatory layers.


Assuntos
Ciclo Celular/fisiologia , Biologia de Sistemas/métodos , Animais , Humanos , Redes e Vias Metabólicas , Modelos Biológicos , Saccharomyces cerevisiae
19.
Nucleic Acids Res ; 47(15): 7825-7841, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31299083

RESUMO

The understanding of the multi-scale nature of molecular networks represents a major challenge. For example, regulation of a timely cell cycle must be coordinated with growth, during which changes in metabolism occur, and integrate information from the extracellular environment, e.g. signal transduction. Forkhead transcription factors are evolutionarily conserved among eukaryotes, and coordinate a timely cell cycle progression in budding yeast. Specifically, Fkh1 and Fkh2 are expressed during a lengthy window of the cell cycle, thus are potentially able to function as hubs in the multi-scale cellular environment that interlocks various biochemical networks. Here we report on a novel ChIP-exo dataset for Fkh1 and Fkh2 in both logarithmic and stationary phases, which is analyzed by novel and existing software tools. Our analysis confirms known Forkhead targets from available ChIP-chip studies and highlights novel ones involved in the cell cycle, metabolism and signal transduction. Target genes are analyzed with respect to their function, temporal expression during the cell cycle, correlation with Fkh1 and Fkh2 as well as signaling and metabolic pathways they occur in. Furthermore, differences in targets between Fkh1 and Fkh2 are presented. Our work highlights Forkhead transcription factors as hubs that integrate multi-scale networks to achieve proper timing of cell division in budding yeast.


Assuntos
Proteínas de Ciclo Celular/genética , DNA Fúngico/química , Fatores de Transcrição Forkhead/genética , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Imunoprecipitação da Cromatina , Replicação do DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Ontologia Genética , Anotação de Sequência Molecular , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
20.
Front Immunol ; 10: 3091, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117197

RESUMO

We here apply a control analysis and various types of stability analysis to an in silico model of innate immunity that addresses the management of inflammation by a therapeutic peptide. Motivation is the observation, both in silico and in experiments, that this therapy is not robust. Our modeling results demonstrate how (1) the biological phenomena of acute and chronic modes of inflammation may reflect an inherently complex bistability with an irrevertible flip between the two modes, (2) the chronic mode of the model has stable, sometimes unique, steady states, while its acute-mode steady states are stable but not unique, (3) as witnessed by TNF levels, acute inflammation is controlled by multiple processes, whereas its chronic-mode inflammation is only controlled by TNF synthesis and washout, (4) only when the antigen load is close to the acute mode's flipping point, many processes impact very strongly on cells and cytokines, (5) there is no antigen exposure level below which reduction of the antigen load alone initiates a flip back to the acute mode, and (6) adding healthy fibroblasts makes the transition from acute to chronic inflammation revertible, although (7) there is a window of antigen load where such a therapy cannot be effective. This suggests that triple therapies may be essential to overcome chronic inflammation. These may comprise (1) anti-immunoglobulin light chain peptides, (2) a temporarily reduced antigen load, and (3a) fibroblast repopulation or (3b) stem cell strategies.


Assuntos
Fibroblastos/imunologia , Fibroblastos/metabolismo , Imunidade Inata , Peptídeos/química , Peptídeos/imunologia , Biomarcadores , Células Cultivadas , Citocinas/metabolismo , Suscetibilidade a Doenças , Inflamação/etiologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA