Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nature ; 623(7988): 842-852, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37853127

RESUMO

Optimum protein function and biochemical activity critically depends on water availability because solvent thermodynamics drive protein folding and macromolecular interactions1. Reciprocally, macromolecules restrict the movement of 'structured' water molecules within their hydration layers, reducing the available 'free' bulk solvent and therefore the total thermodynamic potential energy of water, or water potential. Here, within concentrated macromolecular solutions such as the cytosol, we found that modest changes in temperature greatly affect the water potential, and are counteracted by opposing changes in osmotic strength. This duality of temperature and osmotic strength enables simple manipulations of solvent thermodynamics to prevent cell death after extreme cold or heat shock. Physiologically, cells must sustain their activity against fluctuating temperature, pressure and osmotic strength, which impact water availability within seconds. Yet, established mechanisms of water homeostasis act over much slower timescales2,3; we therefore postulated the existence of a rapid compensatory response. We find that this function is performed by water potential-driven changes in macromolecular assembly, particularly biomolecular condensation of intrinsically disordered proteins. The formation and dissolution of biomolecular condensates liberates and captures free water, respectively, quickly counteracting thermal or osmotic perturbations of water potential, which is consequently robustly buffered in the cytoplasm. Our results indicate that biomolecular condensation constitutes an intrinsic biophysical feedback response that rapidly compensates for intracellular osmotic and thermal fluctuations. We suggest that preserving water availability within the concentrated cytosol is an overlooked evolutionary driver of protein (dis)order and function.


Assuntos
Substâncias Macromoleculares , Proteínas , Solventes , Termodinâmica , Água , Morte Celular , Citosol/química , Citosol/metabolismo , Homeostase , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Concentração Osmolar , Pressão , Proteínas/química , Proteínas/metabolismo , Solventes/química , Solventes/metabolismo , Temperatura , Fatores de Tempo , Água/química , Água/metabolismo
4.
Nat Commun ; 12(1): 6035, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654800

RESUMO

Between 6-20% of the cellular proteome is under circadian control and tunes mammalian cell function with daily environmental cycles. For cell viability, and to maintain volume within narrow limits, the daily variation in osmotic potential exerted by changes in the soluble proteome must be counterbalanced. The mechanisms and consequences of this osmotic compensation have not been investigated before. In cultured cells and in tissue we find that compensation involves electroneutral active transport of Na+, K+, and Cl- through differential activity of SLC12A family cotransporters. In cardiomyocytes ex vivo and in vivo, compensatory ion fluxes confer daily variation in electrical activity. Perturbation of soluble protein abundance has commensurate effects on ion composition and cellular function across the circadian cycle. Thus, circadian regulation of the proteome impacts ion homeostasis with substantial consequences for the physiology of electrically active cells such as cardiomyocytes.


Assuntos
Fenômenos Fisiológicos Celulares , Ritmo Circadiano/fisiologia , Transporte de Íons/fisiologia , Osmose , Animais , Sistema Cardiovascular/patologia , Células Cultivadas , Cloretos/metabolismo , Fibroblastos , Homeostase , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Potássio/metabolismo , Proteoma , Sódio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética
5.
Eur J Prev Cardiol ; 25(13): 1419-1430, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30052067

RESUMO

The hectic pace of contemporary life is a major source of acute and chronic stress, which may have a deleterious impact on body health . In the field of cardiovascular disease, acute emotional stress has been associated with coronary spasm and Takotsubo cardiomyopathy, whereas the manifestations of chronic stress have been overlooked, and most underlying pathophysiology remains to be elucidated. Chronic stress affects the neuronal circuitry composed of cortico-limbic structures and the nuclei regulating autonomic function, eliciting a sympatho-vagal imbalance, characterised by adrenergic activation and vagal withdrawal. Sympathetic terminals are connected to cardiomyocytes in a quasi-synaptic way, producing the so called 'neuro-cardiac junction'. During chronic stress, norepinephrine release is increased, leading to overstimulation of cardiomyocytes via ß1-adrenergic receptors, influencing mainly calcium dynamics, and ß2-adrenergic receptors, which control housekeeping functions. The circadian rhythm of cardiomyocytes is then impaired, with elongation of the catabolic ('light' phase) over the anabolic ('nocturnal') phase. This leads to a depletion of cell energy storage, and a decreased turnover of cell constituents. Even cell interactions are affected, as coupling between cardiomyocytes decreases while coupling between cardiomyocytes and fibroblasts increases. The ultimate results are changes in the shape and velocity of action potential, fibroblast activation and deposition of extracellular matrix. These alterations may predispose to arrhythmias and may favour the development of a stress-related cardiomyopathy. A better comprehension of this cascade of events may allow us to identify screening protocols and treatment strategies (meditation, yoga, physical activity, psychological assistance, ß-blockers) to prevent or relieve ongoing cardiac damage.


Assuntos
Arritmias Cardíacas/fisiopatologia , Sistema Nervoso Autônomo/fisiopatologia , Miócitos Cardíacos/fisiologia , Estresse Psicológico , Arritmias Cardíacas/etiologia , Eletrocardiografia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA