Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Trop ; 224: 106111, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34450063

RESUMO

Toxoplasma gondii is a parasite able to infect various cell types, including trophoblast cells. Studies have demonstrated that interleukin (IL)-10, transforming growth factor (TGF)-ß1 and interferon (IFN)-γ are involved in the susceptibility of BeWo trophoblast cells to T. gondii infection. Furthermore, T. gondii is able to adhere to the plasma membrane of host cells through intercellular adhesion molecule (ICAM)-1. Thus, the present study aimed to assess the role of IL-10, TGF-ß1 and IFN-γ in the expression of ICAM-1 in BeWo and HeLa cells and to analyze the role of ICAM-1 in the adhesion and invasion of T. gondii to these cells under the influence of these cytokines. For this purpose, BeWo and HeLa cells were treated or not, before and after T. gondii infection, with rIL-10, rTGF-ß1 or rIFN-γ. For the BeWo cells, rIL-10 and rTGF-ß1 favored susceptibility to infection, but only rTGF-ß1 and rIFN-γ increased ICAM-1 expression, and TNF-α release. On the other hand, rIFN-γ downregulated the expression of ICAM-1 triggered by T. gondii in HeLa cells, leading to control of the infection. Moreover, we observed that upregulation of ICAM-1, mediated by cytokine's stimulation, in BeWo and HeLa cells resulted in a high number rate of both parasite adhesion and invasion to these cells, which were strongly reduced after ICAM-1 neutralization. Likewise, the blockage of ICAM-1 molecule also impaired T. gondii infection in human villous explants. Taken together, these findings demonstrate that TGF-ß1 and IFN-γ differentially regulate ICAM-1 expression, which may interfere in the adhesion/invasion of T. gondii to BeWo and HeLa cells for modulating susceptibility to infection.


Assuntos
Toxoplasma , Células HeLa , Humanos , Molécula 1 de Adesão Intercelular , Interferons , Fator de Crescimento Transformador beta1 , Trofoblastos
2.
Tissue Cell ; 72: 101544, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33892398

RESUMO

During pregnancy, Toxoplasma gondii can triggers serious manifestations and potentially affect the fetal development. In this scenario, differences in susceptibility of trophoblast cells to T. gondii infection might be evaluated in order to establish new therapeutic approaches capable of interfering in the control of fetal infection by T. gondii. This study aimed to evaluate the susceptibility of cytotrophoblast, syncytiotrophoblast and extravillous trophoblast cells to T. gondii infection. Our data demonstrate that HTR-8/SVneo cells (extravillous trophoblast cells) present higher susceptibility to T. gondii infection when compared to syncytiotrophoblast and cytotrophoblast cells, whereas syncytiotrophoblast was the cell type more resistant to the parasite infection. Also, cytotrophoblast and syncytiotrophoblast cells produced significantly more IL-6 than HTR-8/SVneo cells. On the other hand, HTR-8/SVneo cells showed higher ERK1/2 phosphorylation than cytotrophoblast and syncytiotrophoblast cells. ERK1/2 inhibition reduced T. gondii infection and increased IL-6 production in HTR-8/SVneo cells. Thus, it is plausible to conclude that the greater susceptibility of HTR-8/SVneo cells to infection by T. gondii is related to a higher ERK1/2 phosphorylation and lower levels of IL-6 in these cells compared to other cells, suggesting that these mediators may be important to favor the parasite infection in this type of trophoblastic population.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Gigantes/patologia , Interleucina-6/biossíntese , Toxoplasmose/patologia , Trofoblastos/patologia , Trofoblastos/parasitologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Suscetibilidade a Doenças , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Humanos , Fosforilação , Regulação para Cima
3.
Front Microbiol ; 9: 906, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867817

RESUMO

Migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays important roles in physiology, pathology, immunology and parasitology, including the control of infection by protozoa parasites such as Toxoplasma gondii. As the MIF function in congenital toxoplasmosis is not fully elucidated yet, the present study brings new insights for T. gondii infection in the absence of MIF based on pregnant C57BL/6MIF-/- mouse models. Pregnant C57BL/6MIF-/- and C57BL/6WT mice were infected with 05 cysts of T. gondii (ME49 strain) on the first day of pregnancy (dop) and were euthanized at 8 dop. Non-pregnant and non-infected females were used as control. Our results demonstrated that MIF-/- mice have more accentuated change in body weight and succumbed to infection first than their WT counterparts. Otherwise, pregnancy outcome was less destructive in MIF-/- mice compared to WT ones, and the former had an increase in the mast cell recruitment and IDO expression and consequently presented less inflammatory cytokine production. Also, MIF receptor (CD74) was upregulated in MIF-/- mice, indicating that a compensatory mechanism may be required in this model of study. The global absence of MIF was associated with attenuation of pathology in congenital toxoplasmosis, but resulted in female death probably because of uncontrolled infection. Altogether, ours results demonstrated that part of the immune response that protects a pregnant female from T. gondii infection, favors fetal damage.

4.
J Transl Med ; 12: 132, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24885122

RESUMO

BACKGROUND: Although Toxoplasma gondii infection is normally asymptomatic, severe cases of toxoplasmosis may occur in immunosuppressed patients or congenitally infected newborns. When a fetal infection is established, the recommended treatment is a combination of pyrimethamine, sulfadiazine and folinic acid (PSA). The aim of the present study was to evaluate the efficacy of azithromycin to control T. gondii infection in human villous explants. METHODS: Cultures of third trimester human villous explants were infected with T. gondii and simultaneously treated with either PSA or azithromycin. Proliferation of T. gondii, as well as production of cytokines and hormones by chorionic villous explants, was analyzed. RESULTS: Treatment with either azithromycin or PSA was able to control T. gondii infection in villous explants. After azithromycin or PSA treatment, TNF-α, IL-17A or TGF-ß1 levels secreted by infected villous explants did not present significant differences. However, PSA-treated villous explants had decreased levels of IL-10 and increased IL-12 levels, while treatment with azithromycin increased production of IL-6. Additionally, T. gondii-infected villous explants increased secretion of estradiol, progesterone and HCG+ß, while treatments with azithromycin or PSA reduced secretion of these hormones concurrently with decrease of parasite load. CONCLUSIONS: In conclusion, these results suggest that azithromycin may be defined as an effective alternative drug to control T. gondii infection at the fetal-maternal interface.


Assuntos
Azitromicina/uso terapêutico , Vilosidades Coriônicas/parasitologia , Toxoplasmose/tratamento farmacológico , Azitromicina/farmacologia , Feminino , Humanos , Técnicas In Vitro , Leucovorina/administração & dosagem , Leucovorina/farmacologia , Leucovorina/uso terapêutico , Gravidez , Pirimetamina/administração & dosagem , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Sulfadiazina/administração & dosagem , Sulfadiazina/farmacologia , Sulfadiazina/uso terapêutico , Toxoplasma/efeitos dos fármacos
5.
Vet Res ; 44: 89, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24088531

RESUMO

Heme oxygenase-1 (HO-1) is an enzyme that catabolizes free heme, which induces an intense inflammatory response. The expression of HO-1 is induced by different stimuli, triggering an anti-inflammatory response during biological stress. It was previously verified that HO-1 is able to induce indoleamine 2,3-dioxygenase (IDO), an enzyme that is induced by IFN-γ in Toxoplasma gondii infection. To verify the role of HO-1 during in vivo T. gondii infection, BALB/c and C57BL/6 mice were infected with the ME49 strain and treated with zinc protoporphyrin IX (ZnPPIX) or hemin, which inhibit or induce HO-1 activity, respectively. The results show that T. gondii infection induced high levels of HO-1 expression in the lung of BALB/c and C57BL6 mice. The animals treated with ZnPPIX presented higher parasitism in the lungs of both lineages of mice, whereas hemin treatment decreased the parasite replication in this organ and in the small intestine of infected C57BL/6 mice. Furthermore, C57BL/6 mice infected with T. gondii and treated with hemin showed higher levels of IDO expression in the lungs and small intestine than uninfected mice. In conclusion, our data suggest that HO-1 activity is involved in the control of T. gondii in the lungs of both mouse lineages, whereas the hemin, a HO-1 inducer, seems to be involved in the control of parasitism in the small intestine of C57BL/6 mice.


Assuntos
Regulação da Expressão Gênica , Heme Oxigenase-1/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Toxoplasma/fisiologia , Toxoplasmose Animal/enzimologia , Toxoplasmose Animal/genética , Animais , Citocinas/genética , Citocinas/metabolismo , Feminino , Heme Oxigenase-1/metabolismo , Hemina/farmacologia , Imuno-Histoquímica , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Intestino Delgado/enzimologia , Intestino Delgado/metabolismo , Intestino Delgado/parasitologia , Pulmão/enzimologia , Pulmão/metabolismo , Pulmão/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Protoporfirinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Toxoplasmose Animal/parasitologia
6.
Int J Parasitol ; 40(14): 1629-37, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20708622

RESUMO

Neospora caninum is an apicomplexan parasite, closely related to Toxoplasma gondii, and causes abortion and congenital neosporosis in cattle worldwide. Trophoblast cells act in mechanisms of innate immune defense at the fetal-maternal interface and no data are available about the interaction of Neospora with human trophoblasts. Thus, this study aimed to verify the susceptibility of human trophoblastic (BeWo) compared with uterine cervical (HeLa) cell lines to N. caninum. BeWo and HeLa cells were infected with different parasite:cell ratios of N. caninum tachyzoites and analyzed at different times after infection for cell viability using thiazolyl blue tetrazole and lactate dehydrogenase assays. Both cell lines were also evaluated for cytokine production and parasite infection/replication assays when pre-treated or not with Neospora lysate antigen (NLA) or human recombinant IFN-γ. Cell viability was increased up to 48 h of infection in both types of cells, suggesting that infection could inhibit early cell death and/or induce cell proliferation. Neospora infection induced up-regulation of the macrophage migration inhibitory factor (MIF), mainly in HeLa cells, which was enhanced by cell pre-treatment by NLA or IFN-γ. Conversely, parasite infection induced down-regulation of the transforming growth factor (TGF-ß), mostly in BeWo cells, which was decreased with NLA or IFN-γ pre-treatment. HeLa cells were more susceptible to Neospora infection than BeWo cells and IFN-γ pre-treatment resulted in reduced infection indices in both cell lines. Control of parasite growth was mediated by IFN-γ through an indoleamine-2,3-dioxygenase-dependent mechanism in HeLa cells alone. Based on these results, we concluded that BeWo and HeLa cells are readily infected by N. caninum, although presenting differences in susceptibility to infection, cytokine production and cell viability. Thus, these host cells can be considered in comparative approaches to understand strategies used by N. caninum to survive at the maternal-fetal interface.


Assuntos
Doenças dos Bovinos/parasitologia , Colo do Útero/parasitologia , Coccidiose/veterinária , Suscetibilidade a Doenças , Neospora/fisiologia , Trofoblastos/parasitologia , Animais , Bovinos , Doenças dos Bovinos/imunologia , Colo do Útero/imunologia , Coccidiose/imunologia , Coccidiose/parasitologia , Citocinas/imunologia , Feminino , Células HeLa , Humanos , Neospora/imunologia , Trofoblastos/imunologia
7.
Immunobiology ; 215(1): 26-37, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19261354

RESUMO

Toxoplasma gondii surface is coated by closely related antigens that belong to SRS (SAG-1 related sequences) superfamily. Two tachyzoite-specific SRS antigens, SAG1 and SAG2, are immunodominant proteins that apparently modulate the virulence of infection by inducing the host immune response against tachyzoites during the acute phase. In this study, we described a conformationally insensitive monoclonal antibody (A4D12mAb) that recognizes a linear epitope shared by two isoforms of p22 that is expressed in the surface of T. gondii tachyzoites. By using phage display approach and production of recombinant proteins, we clearly demonstrated that the A4D12mAb recognizes an epitope within C-terminal region of SAG2A. This mAb reacts with both T. gondii genotypes (I and II) but not with a closely related parasite, Neospora caninum. Also, the pretreatment of tachyzoites with A4D12 mAb did not inhibit T. gondii infection, suggesting that the epitope herein mapped is not crucial for tachyzoite invasion. However, a panel of human T. gondii positive sera showed significant degree of inhibition of A4D12 mAb reactivity against T. gondii native antigens, indicating that both A4D12 mAb and human sera recognize an overlapping immunodominant epitope within C-terminal region of SAG2A. To our knowledge, this is the first evidence using bioselection by phage display that identifies a T. gondii linear epitope recognized by a mAb specific to SAG2A. In conclusion, the results here presented add a new piece of information concerning T. gondii SAG2A molecule, emphasizing two dissimilar biological roles of this molecule, particularly for A4D12 epitope, suggesting that these characteristics may be important for parasite survival, since it is part of parasite components able to induce a strong immune response enough to allow host survival and establish long-term chronic infection.


Assuntos
Anticorpos Monoclonais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Epitopos Imunodominantes/metabolismo , Proteínas de Protozoários/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Clonagem Molecular , Mapeamento de Epitopos , Fibroblastos/imunologia , Fibroblastos/microbiologia , Fibroblastos/patologia , Humanos , Hibridomas , Soros Imunes , Imunidade Humoral , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neospora/imunologia , Biblioteca de Peptídeos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , Toxoplasmose/diagnóstico , Toxoplasmose/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA