Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Cureus ; 16(5): e60707, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38899268

RESUMO

INTRODUCTION: Heart failure (HF) is a clinical syndrome characterized by cardinal symptoms that may be accompanied by signs. It results from structural and/or functional abnormalities of the heart leading to elevated intracardiac pressures and/or inadequate cardiac output at rest and/or during exercise. The prevalence of iron deficiency and anemia justifies the current guidelines recommendation of screening. Genes HP, ACE, MTHFR, HFE, and CYBA are involved in oxidative mechanisms, iron metabolism, and hematologic homeostasis. This study investigates the contribution of variants Hp1/2 (HP), I/D (ACE), C677T (MTHFR), C282Y and H63D (HFE), and C242T (CYBA) to the development of HF, either independently or in epistasis. METHODS: We used a database of 389 individuals, 143 HF patients, and 246 healthy controls. Genotypes were characterized through PAGE electrophoresis, PCR, PCR-RFLP, and multiplex-ARMS. Data analysis was performed with the SPSS® 26.0 software (IBM Corp., Armonk, NY). RESULTS: We observed a significant association between the MTHFR gene and HF predisposition. The presence of allele T and genotype CT constituted risk, while genotype CC granted protection. Epistatic interactions revealed risk between genotype II of the ACE gene and genotypes CC (C282Y) or HH (H63D) of the HFE gene. Risk was also observed for interactions between genotype CC (CYBA)and genotypes 2-2 (HP), CT (MTHFR), or HH (HFE-H63D). CONCLUSION: We concluded that genes HP, ACE, MTHFR, HFE, and CYBA contribute to the susceptibility for HF, individually or in epistasis. This study contributes to the clarification of the role that genes involved in oxidative mechanisms and iron metabolism play in the physiopathology of HF. It is, therefore, a step forward in risk stratification and personalized medicine.

2.
Front Psychiatry ; 14: 1227618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575572

RESUMO

Background: Inflammation has been implicated in core features of depression pathophysiology and treatment resistance. Therefore, new challenges in the discovery of inflammatory mediators implicated in depression have emerged. MicroRNAs (miRNAs) have been found aberrantly expressed in several pathologies, increasing their potential as biomarkers and therapeutical targets. In this study, the aim was to assess the changes and biomarker potential of inflammation-related miRNAs in depression patients. Methods: Depression diagnosis was performed according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). 40 healthy controls and 32 depression patients were included in the study. The levels of inflammatory cytokines were measured in plasma, and expression levels of cytokines and inflammation-related miRNAs were evaluated in peripheral blood mononuclear cells (PBMCs). Results: Depression patients were found to have a pro-inflammatory profile in plasma, with significantly higher levels of TNF-α and CCL2 compared with controls. In PBMCs of depression patients, TNF-α and IL-6 expression levels were significantly up and downregulated, respectively. Moreover, miR-342 levels were found upregulated, while miR-146a and miR-155 were significantly downregulated. miR-342 expression levels were positively correlated with TNF-α. Importantly, when analyzed as a diagnostic panel, receiver operating characteristics (ROC) analysis of miR-342, miR-146a, miR-155 in combination, showed to be highly specific and sensitive in distinguishing between depression patients and healthy controls. Conclusion: In summary, these findings suggest that inflammation-related miRNAs are aberrantly expressed in depression patients. Moreover, we show evidences on the potential of the combination of dysregulated miRNAs as a powerful diagnostic tool for depression.

3.
Front Bioeng Biotechnol ; 11: 1155596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469450

RESUMO

Long non-coding RNAs (lncRNAs) are master regulators of gene expression and have recently emerged as potential innovative therapeutic targets. The deregulation of lncRNA expression patterns has been associated with age-related and noncommunicable diseases in the bone tissue, including osteoporosis and tumors. However, the specific role of lncRNAs in physiological or pathological conditions in the bone tissue still needs to be further clarified, for their exploitation as therapeutic tools. In the present study, we evaluate the potential of the lncRNA CASC2 as a regulator of osteogenic differentiation and mineralization. Results show that CASC2 expression is decreased during osteogenic differentiation of human bone marrow-derived Mesenchymal Stem/Stromal cells (hMSCs). CASC2 knockdown, using small interfering RNA against CASC2 (siCASC2), increases the expression of the late osteogenic marker Bone Sialoprotein (BSP), but does not impact ALP staining level nor the expression of early osteogenic transcripts, including RUNX2 and OPG. Although siCASC2 does not impact hMSC proliferation nor apoptosis, it promotes the mineralization of hMSC cultured under osteogenic-inducing conditions, as shown by the increase of calcium deposits. Mass spectrometry-based proteomic analysis revealed that 89 proteins are regulated by CASC2 at late osteogenic stages, including proteins associated with bone diseases or anthropometric and musculoskeletal traits. Specifically, the Cartilage Oligomeric Matrix Protein (COMP) is highly enhanced by CASC2 knockdown at late stages of osteogenic differentiation, at both transcriptional and protein level. On the other hand, inhibition of COMP impairs osteoblasts mineralization as well as the expression of BSP. The results indicate that lncRNA CASC2 regulates late osteogenic differentiation and mineralization in hMSC via COMP and BSP. In conclusion, this study suggests that targeting lncRNA CASC2 could be a potential approach for modulating bone mineralization.

4.
NPJ Regen Med ; 8(1): 34, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429889

RESUMO

Intervertebral disc (IVD) degeneration and herniation is a leading cause of disability globally and a large unmet clinical need. No efficient non-surgical therapy is available, and there is an urgency for minimally invasive therapies capable of restoring tissue function. IVD spontaneous hernia regression following conservative treatment is a clinically relevant phenomenon that has been linked to an inflammatory response. This study establishes the central role of macrophages in IVD spontaneous hernia regression and provides the first preclinical demonstration of a macrophage-based therapy for IVD herniation. A rat model of IVD herniation was used to test complementary experimental setups: (1) macrophage systemic depletion via intravenous administration of clodronate liposomes (Group CLP2w: depletion between 0 and 2 weeks post-lesion; Group CLP6w: depletion between 2 and 6 weeks post-lesion), and (2) administration of bone marrow-derived macrophages into the herniated IVD, 2 weeks post-lesion (Group Mac6w). Herniated animals without treatment were used as controls. The herniated area was quantified by histology in consecutive proteoglycan/collagen IVD sections at 2 and 6 weeks post-lesion. Clodronate-mediated macrophage systemic depletion was confirmed by flow cytometry and resulted in increased hernia sizes. Bone marrow-derived macrophages were successfully administered into rat IVD hernias resulting in a 44% decrease in hernia size. No relevant systemic immune reaction was identified by flow cytometry, cytokine, or proteomic analysis. Furthermore, a possible mechanism for macrophage-induced hernia regression and tissue repair was unveiled through IL4, IL17a, IL18, LIX, and RANTES increase. This study represents the first preclinical proof-of-concept of macrophage-based immunotherapy for IVD herniation.

5.
J Neurosurg Pediatr ; 32(3): 267-276, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310048

RESUMO

OBJECTIVE: Surgery is the cornerstone of craniosynostosis treatment. In this study, two widely accepted techniques are described: endoscope-assisted surgery (EAS) and open surgery (OS). The authors compared the perioperative and reconstructive outcomes of EAS and OS in children ≤ 6 months of age treated at the Napoleón Franco Pareja Children's Hospital (Cartagena, Colombia). METHODS: According to the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement, patients with defined criteria who underwent surgery to correct craniosynostosis between June 1996 and June 2022 were retrospectively enrolled. Demographic data, perioperative outcomes, and follow-up were obtained from their medical records. Student t-tests were used for significance. Cronbach's α was used to assess agreement between estimated blood loss (EBL). Spearman's correlation coefficient and the coefficient of determination were used to establish associations between the results of interest, and the odds ratio was used to calculate the risk ratio of blood product transfusion. RESULTS: A total of 74 patients met the inclusion criteria; 24 (32.4%) belonged to the OS group and 50 (67.6%) to the EAS group. There was a high interobserver agreement quantifying the EBL. The EBL, transfusion of blood products, surgical time, and hospital stay were shorter in the EAS group. Surgical time was positively correlated with EBL. There were no differences between the two groups in the percentage of cranial index correction at 12 months of follow-up. CONCLUSIONS: Surgical correction of craniosynostosis in children aged ≤ 6 months by EAS was associated with a significant decrease in EBL, transfusion requirements, surgical time, and hospital stay compared with OS. The results of cranial deformity correction in patients with scaphocephaly and acrocephaly were equivalent in both study groups.


Assuntos
Perda Sanguínea Cirúrgica , Craniossinostoses , Humanos , Criança , Lactente , Estudos Retrospectivos , Craniossinostoses/cirurgia , Endoscopia/métodos , Crânio , Resultado do Tratamento
6.
Aging Cell ; 22(8): e13873, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37254638

RESUMO

Aging is one of the major etiological factors driving intervertebral disc (IVD) degeneration, the main cause of low back pain. The nucleus pulposus (NP) includes a heterogeneous cell population, which is still poorly characterized. Here, we aimed to uncover main alterations in NP cells with aging. For that, bovine coccygeal discs from young (12 months) and old (10-16 years old) animals were dissected and primary NP cells were isolated. Gene expression and proteomics of fresh NP cells were performed. NP cells were labelled with propidium iodide and analysed by flow cytometry for the expression of CD29, CD44, CD45, CD146, GD2, Tie2, CD34 and Stro-1. Morphological cell features were also dissected by imaging flow cytometry. Elder NP cells (up-regulated bIL-6 and bMMP1 gene expression) presented lower percentages of CD29+, CD44+, CD45+ and Tie2+ cells compared with young NP cells (upregulated bIL-8, bCOL2A1 and bACAN gene expression), while GD2, CD146, Stro-1 and CD34 expression were maintained with age. NP cellulome showed an upregulation of proteins related to endoplasmic reticulum (ER) and melanosome independently of age, whereas proteins upregulated in elder NP cells were also associated with glycosylation and disulfide bonds. Flow cytometry analysis of NP cells disclosed the existence of 4 subpopulations with distinct auto-fluorescence and size with different dynamics along aging. Regarding cell morphology, aging increases NP cell area, diameter and vesicles. These results contribute to a better understanding of NP cells aging and highlighting potential anti-aging targets that can help to mitigate age-related disc disease.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animais , Bovinos , Núcleo Pulposo/metabolismo , Antígeno CD146/metabolismo , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Envelhecimento/metabolismo
7.
Eur Spine J ; 32(6): 1985-1991, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37106251

RESUMO

PURPOSE: Over the last years, the number of vertebral arthrodesis has been steadily increasing. The use of iliac crest bone autograft remains the "gold standard" for bone graft substitute in these procedures. However, this solution has some side effects, such as the problem of donor site morbidity indicating that there is a real need for adequate alternatives. This pilot study aimed to evaluate the usefulness of chitosan (Ch) porous 3D scaffolds incorporated with resolvin D1 (RvD1) as an alternative implant to iliac bone autograft. METHODS: We have performed bilateral posterolateral lumbar vertebral arthrodesis in a rat animal model. Three experimental groups were used: (i) non-operated animals; (ii) animals implanted with Ch scaffolds incorporated with RvD1 and (iii) animals implanted with iliac bone autograft. RESULTS: The collagenous fibrous capsule formed around the Ch scaffolds with RvD1 is less dense when compared with the iliac bone autograft, suggesting an important anti-inflammatory effect of RvD1. Additionally, new bone formation was observed in the Ch scaffolds with RvD1. CONCLUSION: These results demonstrate the potential of these scaffolds for bone tissue repair applications.


Assuntos
Substitutos Ósseos , Quitosana , Fusão Vertebral , Ratos , Animais , Quitosana/farmacologia , Projetos Piloto , Fusão Vertebral/métodos , Vértebras Lombares/cirurgia , Transplante Ósseo/métodos
8.
Stem Cell Res Ther ; 14(1): 37, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882843

RESUMO

BACKGROUND: The vast and promising class of long non-coding RNAs (lncRNAs) has been under investigation for distinct therapeutic applications. Nevertheless, their role as molecular drivers of bone regeneration remains poorly studied. The lncRNA H19 mediates osteogenic differentiation of Mesenchymal Stem/Stromal Cells (MSCs) through the control of intracellular pathways. However, the effect of H19 on the extracellular matrix (ECM) components is still largely unknown. This research study was designed to decode the H19-mediated ECM regulatory network, and to reveal how the decellularized siH19-engineered matrices influence MSC proliferation and fate. This is particularly relevant for diseases in which the ECM regulation and remodeling processes are disrupted, such as osteoporosis. METHODS: Mass spectrometry-based quantitative proteomics analysis was used to identify ECM components, after oligonucleotides delivery to osteoporosis-derived hMSCs. Moreover, qRT-PCR, immunofluorescence and proliferation, differentiation and apoptosis assays were performed. Engineered matrices were decellularized, characterized by atomic force microscopy and repopulated with hMSC and pre-adipocytes. Clinical bone samples were characterized by histomorphometry analysis. RESULTS: Our study provides an in-depth proteome-wide and matrisome-specific analysis of the ECM proteins controlled by the lncRNA H19. Using bone marrow-isolated MSC from patients with osteoporosis, we identified fibrillin-1 (FBN1), vitronectin (VTN) and collagen triple helix repeat containing 1 (CTHRC1), among others, as having different pattern levels following H19 silencing. Decellularized siH19-engineered matrices are less dense and have a decreased collagen content compared with control matrices. Repopulation with naïve MSCs promotes a shift towards the adipogenic lineage in detriment of the osteogenic lineage and inhibits proliferation. In pre-adipocytes, these siH19-matrices enhance lipid droplets formation. Mechanistically, H19 is targeted by miR-29c, whose expression is decreased in osteoporotic bone clinical samples. Accordingly, miR-29c impacts MSC proliferation and collagen production, but does not influence ALP staining or mineralization, revealing that H19 silencing and miR-29c mimics have complementary but not overlapping functions. CONCLUSION: Our data suggest H19 as a therapeutic target to engineer the bone ECM and to control cell behavior.


Assuntos
Matriz Extracelular , MicroRNAs , RNA Longo não Codificante , Humanos , Matriz Extracelular/genética , Proteínas da Matriz Extracelular , Osteogênese/genética , RNA Longo não Codificante/genética
9.
Biomater Adv ; 143: 213192, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403438

RESUMO

With the lack of effective treatments for low back pain, the use of extracellular matrix (ECM)-based biomaterials have emerged with undeniable promise for IVD regeneration. Decellularized scaffolds can recreate an ideal microenvironment inducing tissue remodeling and repair. In particular, fetal tissues have a superior regenerative capacity given their ECM composition. In line with this, we unraveled age-associated alterations of the nucleus pulposus (NP) matrisome. Thus, the aim of the present work was to evaluate the impact of ECM donor age on IVD de/regeneration. Accordingly, we optimized an SDS (0.1 %, 1 h)-based decellularization protocol that preserves ECM cues in bovine NPs from different ages. After repopulation with adult NP cells, younger matrices showed the highest repopulation efficiency. Most importantly, cells seeded on younger scaffolds produced healthy ECM proteins suggesting an increased capacity to restore a functional IVD microenvironment. In vivo, only fetal matrices decreased neovessel formation, showing an anti-angiogenic potential. Our findings demonstrate that ECM donor age has a strong influence on angiogenesis and ECM de novo synthesis, opening new avenues for novel therapeutic strategies for the IVD. Additionally, more appropriate 3D models to study age-associated IVD pathology were unveiled.


Assuntos
Dor Lombar , Núcleo Pulposo , Animais , Bovinos , Matriz Extracelular , Proteínas da Matriz Extracelular , Regeneração
10.
Regen Biomater ; 9: rbac065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267154

RESUMO

Successful wound healing is a process that has three overlying phases: inflammatory, proliferative and remodeling. Chronic wounds are characterized by a perpetuated inflammation that inhibits the proliferative and remodeling phases and impairs the wound healing. Macrophages are key modulators of the wound healing process. Initially, they are responsible for the wound cleaning and for the phagocytosis of pathogens and afterwards they lead to the resolution of the inflammatory response and they express growth factors important for angiogenesis and cytokines and growth factors needed for cell proliferation and deposition of extracellular matrix. The phenotype of the macrophage changes gradually throughout the healing process from the initial M1 pro-inflammatory phenotype characteristic of the acute response to the M2 pro-regenerative phenotype that allows an accurate tissue repair. In chronic wounds, M1 pro-inflammatory macrophages persist and impair tissue repair. As such, immunomodulatory biomaterials arise as promising solutions to accelerate the wound healing process. In this review, we discuss the importance of macrophages and their polarization throughout the different phases of wound healing; macrophage dysfunction in chronic wounds and the use of immunomodulatory biomaterials to overcome the critical problem of chronic wounds-the continued inflammatory phase that impairs healing.

12.
Brain Behav Immun ; 99: 397-408, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793941

RESUMO

Neuroinflammation is increasingly recognized as playing a critical role in depression. Early-life stress exposure and constitutive differences in glucocorticoid responsiveness to stressors are two key risk factors for depression, but their impacts on the inflammatory status of the brain is still uncertain. Moreover, there is a need to identify specific molecules involved in these processes with the potential to be used as alternative therapeutic targets in inflammation-related depression. Here, we studied how peripubertal stress (PPS) combined with differential corticosterone (CORT)-stress responsiveness (CSR) influences depressive-like behaviors and brain inflammatory markers in male rats in adulthood, and how these alterations relate to microglia activation and miR-342 expression. We found that high-CORT stress-responsive (H-CSR) male rats that underwent PPS exhibited increased anhedonia and passive coping responses in adulthood. Also, animals exposed to PPS showed increased hippocampal TNF-α expression, which positively correlated with passive coping responses. In addition, PPS caused long-term effects on hippocampal microglia, particularly in H-CSR rats, with increased hippocampal IBA-1 expression and morphological alterations compatible with a higher degree of activation. H-CSR animals also showed upregulation of hippocampal miR-342, a mediator of TNF-α-driven microglial activation, and its expression was positively correlated with TNF-α expression, microglial activation and passive coping responses. Our findings indicate that individuals with constitutive H-CSR are particularly sensitive to developing protracted depression-like behaviors following PPS exposure. In addition, they show neuro-immunological alterations in adulthood, such as increased hippocampal TNF-α expression, microglial activation and miR-342 expression. Our work highlights miR-342 as a potential therapeutic target in inflammation-related depression.


Assuntos
Depressão , Microglia , Animais , Depressão/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Masculino , Microglia/metabolismo , Ratos , Estresse Psicológico/metabolismo
13.
Cancers (Basel) ; 13(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34771422

RESUMO

Multiple myeloma (MM) is the second most frequent hematological disease and can cause skeletal osteolytic lesions. This study aims to evaluate the expression of circulating microRNAs (miRNAs) in MM patients and to correlate those levels with clinicopathological features, including bone lesions. A panel of miRNAs associated with MM onset and progression, or with bone remodeling, was analyzed in the plasma of 82 subjects (47 MM patients; 35 healthy controls). Results show that miR-16-5p, miR-20a-5p, and miR-21-5p are differently expressed between MM patients and healthy controls. Receiver operating characteristic analyses indicate that their combined expression has potential as a molecular marker (Area Under the Curve, AUC of 0.8249). Furthermore, significant correlations were found between the analyzed miRNAs and disease stage, treatment, ß2 microglobulin, serum albumin and creatinine levels, but not with calcium levels or genetic alterations. In this cohort, 65.96% of MM patients had bone lesions, the majority of which were in the vertebrae. Additionally, miR-29c-3p was decreased in patients with osteolytic lesions compared with patients without bone disease. Interestingly, circulating levels of miR-29b-3p correlated with cervical and thoracic vertebral lesions, while miR-195-5p correlated with thoracic lesions. Our findings suggest circulating miRNAs can be promising biomarkers for MM diagnosis and that their levels correlate with myeloma bone disease and osteolytic lesions.

14.
Biomater Sci ; 9(9): 3209-3227, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949372

RESUMO

Chitosan (Ch) has recently been used in different studies as a vaccine adjuvant with an ability to modulate the tumor microenvironment (TME). This systematic review aims to elucidate the added value of using Ch-based therapies for immunotherapeutic strategies in cancer treatment, through the exploration of different Ch-based formulations, their capacity to modulate immune cells in vitro and in vivo, and their translational potential for clinical settings. A systematic review was conducted on PubMed, following both inclusion and exclusion steps. Original articles which focused on the immunomodulatory role of Ch-based formulations in the TME were included, as well as its usage as a delivery vehicle for other immunomodulatory molecules. This review illustrates the added value of Ch-based systems to reshape the TME, through the modulation of immune cells using different Ch formulations, namely solutions, films, gels, microneedles and nanoparticles. Generally, Ch-based formulations increase the recruitment and proliferation of cells associated with pro-inflammatory abilities and decrease cells which exert anti-inflammatory activities. These effects correlated with a decreased tumor weight, reduced metastases, reversion of the immunosuppressive TME and increased survival in vivo. Overall, Ch-based formulations present the potential for immunotherapy in cancer. Nevertheless, clinical translation remains challenging, since the majority of the studies use Ch in formulations with other components, implicating that some of the observed effects could result from the combination of the individual effects. More studies on the use of different Ch-based formulations, complementary to standardization and disclosure of the Ch properties used are required to improve the immunomodulatory effects of Ch-based formulations in cancer.


Assuntos
Quitosana , Nanopartículas , Neoplasias , Géis , Imunomodulação , Neoplasias/tratamento farmacológico , Microambiente Tumoral
15.
Fundam Clin Pharmacol ; 35(2): 305-320, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33011993

RESUMO

Viral infections cause high morbidity and mortality, threaten public health, and impose a socioeconomic burden. We have seen the recent emergence of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), the causative agent of COVID-19 that has already infected more than 29 million people, with more than 900 000 deaths since its identification in December 2019. Considering the significant impact of viral infections, research and development of new antivirals and control strategies are essential. In this paper, we summarize 96 antivirals approved by the Food and Drug Administration between 1987 and 2019. Of these, 49 (51%) are used in treatments against human immunodeficiency virus (HIV), four against human papillomavirus, six against cytomegalovirus, eight against hepatitis B virus, five against influenza, six against herpes simplex virus, 17 against hepatitis C virus and one against respiratory syncytial virus. This review also describes future perspectives for new antiviral therapies such as nanotechnologies, monoclonal antibodies and the CRISPR-Cas system. These strategies are suggested as inhibitors of viral replication by various means, such as direct binding to the viral particle, blocking the infection, changes in intracellular mechanisms or viral genes, preventing replication and virion formation. We also observed that a large number of viral agents have no therapy available and the majority of those approved in the last 32 years are restricted to some groups, especially anti-HIV. Additionally, the emergence of new viruses and strains resistant to available antivirals has necessitated the formulation of new antivirals.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Humanos
16.
J Cell Biochem ; 122(1): 116-129, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32748513

RESUMO

Interactions between cell types, growth factors, and extracellular matrix components involved in angiogenesis are crucial for new vessel formation leading to tissue regeneration. This study investigated whether cocultures of fibroblasts and endothelial cells (ECs; from macro- or microvasculature) play a role in the formation of microvessel-like structures by ECs, as well as modulate fibroblast differentiation and growth factors production (vascular endothelial cell growth factor, basic fibroblast growth factor, active transforming growth factor-ß1, and interleukin-8), which are important for vessel sprouting and maturation. Data obtained revealed that in vitro coculture systems of fibroblasts and human ECs stimulate collagen synthesis and growth factors production by fibroblasts that ultimately affect the formation and distribution of microvessel-like structures in cell cultures. In this study, areas with activated fibroblasts and high alkaline phosphatase (ALP) activity were also observed in cocultures. Molecular docking assays revealed that ALP has two binding positions for collagen, suggesting its impact in collagen proteins' aggregation, cell migration, and microvessel assembly. These findings indicate that bioinformatics and coculture systems are complementary tools for investigating the participation of proteins, like collagen and ALP in angiogenesis.


Assuntos
Fosfatase Alcalina/metabolismo , Movimento Celular , Colágeno/metabolismo , Endotélio Vascular/fisiologia , Fibroblastos/fisiologia , Microvasos/fisiologia , Neovascularização Fisiológica , Fosfatase Alcalina/química , Sítios de Ligação , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Endotélio Vascular/citologia , Fibroblastos/citologia , Humanos , Técnicas In Vitro , Microvasos/citologia , Conformação Proteica
17.
Biomaterials ; 257: 120218, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32736253

RESUMO

Radiotherapy (RT) is an essential treatment modality for several types of cancer. Despite its therapeutic potential, RT is frequently insufficient to overcome the immunosuppressive nature of the tumor microenvironment, failing to control tumor metastases. Innovative immunomodulatory strategies, like immunostimulatory biomaterials could be used to boost the immunogenic effects of RT. Herein, we addressed the synergistic potential of immunostimulatory chitosan/poly(γ-glutamic acid) nanoparticles (Ch/γ-PGA NPs) combined with RT to induce antitumor immunity in the 4T1 orthotopic breast tumor mouse model. Non-treated animals had progressive primary tumor growth and developed splenomegaly and lung metastases. While RT decreased primary tumor burden, Ch/γ-PGA NPs-treatment decreased systemic immunosuppression and lung metastases. The combination therapy (RT + Ch/γ-PGA NPs) synergistically impaired 4T1 tumor progression, which was associated with a significant primary tumor growth and splenomegaly reduction, a decrease in the percentage of splenic immunosuppressive myeloid cells and an increase in antitumoral CD4+IFN-γ+ population. Notably, animals from the combination therapy presented less and smaller lung metastatic foci and lower levels of the systemic pro-tumor cytokines IL-3, IL-4, IL-10, and of the CCL4 chemokine, in comparison to non-treated animals. Overall, these results evidenced that Ch/γ-PGA NPs potentiate and synergize with RT, headlining their promising role as adjuvant anticancer strategies.


Assuntos
Quitosana , Neoplasias Mamárias Experimentais , Nanopartículas , Animais , Feminino , Imunoterapia , Neoplasias Mamárias Experimentais/terapia , Camundongos , Ácido Poliglutâmico/análogos & derivados
18.
Acta Biomater ; 114: 471-484, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32688091

RESUMO

Macrophage behavior upon biomaterial implantation conditions the inflammatory response and subsequent tissue repair. The hypothesis behind this work was that fibrinogen (Fg) and magnesium (Mg) biomaterials, used in combination (FgMg) could act synergistically to modulate macrophage activation, promoting a pro-regenerative phenotype. Materials were characterized by scanning electron microscopy, Fg and Mg degradation products were quantified by atomic absorption spectroscopy and ELISA. Whole blood immune cells and primary human monocyte-derived macrophages were exposed to the biomaterials extracts in unstimulated (M0) or pro-inflammatory LPS or LPS-IFNγ (M1) conditions. Macrophage phenotype was evaluated by flow cytometry, cytokines secreted by whole blood cells and macrophages were measured by ELISA, and signaling pathways were probed by Western blotting. The secretomes of macrophages preconditioned with biomaterials extracts were incubated with human mesenchymal stem/stromal cells (MSC) and their effect on osteogenic differentiation was evaluated via Alkaline Phosphatase (ALP) activity and alizarin red staining. Scaffolds of Fg, alone or in the FgMg combination, presented similar 3D porous architectures. Extracts from FgMg materials reduced LPS-induced TNF-α secretion by innate immune cells, and macrophage M1 polarization upon LPS-IFNγ stimulation, resulting in lower cell surface CD86 expression, lower NFκB p65 phosphorylation and reduced TNF-α secretion. Moreover, while biomaterial extracts per se did not enhance MSC osteogenic differentiation, macrophage secretome, particularly from cells exposed to FgMg extracts, increased MSC ALP activity and alizarin red staining, compared with extracts alone. These findings suggest that the combination of Fg and Mg synergistically influences macrophage pro-inflammatory activation and crosstalk with MSC. STATEMENT OF SIGNIFICANCE: Modulating macrophage phenotype by degradable and bioactive biomaterials is an increasingly explored strategy to promote tissue repair/regeneration. Fibrinogen (Fg) and magnesium (Mg)-based materials have been explored in this context. Previous work from our group showed that monocytes interact with fibrinogen adsorbed onto chitosan surfaces through TLR4 and that fibrinogen scaffolds promote in vivo bone regeneration. Also, magnesium ions have been reported to modulate macrophage pro-inflammatory M1 stimulation and to promote bone repair. Here we report, for the first time, the combination of Fg and Mg materials, hypothesizing that it could act synergistically on macrophages, directing them towards a pro-regenerative phenotype. As a first step towards proving/disproving our hypothesis we used extracts obtained from Fg, Mg and FgMg multilayer constructs. We observed that FgMg extracts led to a reduction in the polarization of macrophages towards a pro-inflammatory phenotype. Also, the secretome of macrophages exposed to extracts of the combination material promoted the expression of osteogenic markers by MSCs.


Assuntos
Materiais Biocompatíveis , Magnésio , Materiais Biocompatíveis/farmacologia , Fibrinogênio , Humanos , Macrófagos , Magnésio/farmacologia , NF-kappa B , Osteogênese , Fenótipo
19.
Cell Death Dis ; 11(6): 415, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488063

RESUMO

Growing evidences suggest that sustained neuroinflammation, caused by microglia overactivation, is implicated in the development and aggravation of several neurological and psychiatric disorders. In some pathological conditions, microglia produce increased levels of cytotoxic and inflammatory mediators, such as tumor necrosis factor alpha (TNF-α), which can reactivate microglia in a positive feedback mechanism. However, specific molecular mediators that can be effectively targeted to control TNF-α-mediated microglia overactivation, are yet to be uncovered. In this context, we aim to identify novel TNF-α-mediated micro(mi)RNAs and to dissect their roles in microglia activation, as well as to explore their impact on the cellular communication with neurons. A miRNA microarray, followed by RT-qPCR validation, was performed on TNF-α-stimulated primary rat microglia. Gain- and loss-of-function in vitro assays and proteomic analysis were used to dissect the role of miR-342 in microglia activation. Co-cultures of microglia with hippocampal neurons, using a microfluidic system, were performed to understand the impact on neurotoxicity. Stimulation of primary rat microglia with TNF-α led to an upregulation of Nos2, Tnf, and Il1b mRNAs. In addition, ph-NF-kB p65 levels were also increased. miRNA microarray analysis followed by RT-qPCR validation revealed that TNF-α stimulation induced the upregulation of miR-342. Interestingly, miR-342 overexpression in N9 microglia was sufficient to activate the NF-kB pathway by inhibiting BAG-1, leading to increased secretion of TNF-α and IL-1ß. Conversely, miR-342 inhibition led to a strong decrease in the levels of these cytokines after TNF-α activation. In fact, both TNF-α-stimulated and miR-342-overexpressing microglia drastically affected neuron viability. Remarkably, increased levels of nitrites were detected in the supernatants of these co-cultures. Globally, our findings show that miR-342 is a crucial mediator of TNF-α-mediated microglia activation and a potential target to tackle microglia-driven neuroinflammation.


Assuntos
MicroRNAs/metabolismo , Microglia/patologia , NF-kappa B/metabolismo , Neurotoxinas/toxicidade , Fator de Necrose Tumoral alfa/farmacologia , Animais , Animais Recém-Nascidos , Linhagem Celular , Citocinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Inflamação/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Biológicos , Ratos Wistar , Fatores de Transcrição/metabolismo
20.
Trends Biotechnol ; 38(9): 947-951, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32466967

RESUMO

In the last decade, intervertebral disc (IVD) decellularization has gained significant attention for tissue regenerative purposes as a successful therapeutic alternative for low back pain (LBP). We discuss the recent advances in IVD decellularization, repopulation, and sterilization procedures, highlighting the major challenges that need to be addressed for clinical translation.


Assuntos
Degeneração do Disco Intervertebral/terapia , Disco Intervertebral/crescimento & desenvolvimento , Regeneração/genética , Engenharia Tecidual , Animais , Materiais Biocompatíveis/uso terapêutico , Matriz Extracelular/transplante , Glicosaminoglicanos/genética , Glicosaminoglicanos/uso terapêutico , Humanos , Disco Intervertebral/patologia , Disco Intervertebral/transplante , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA