Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Commun ; 13(1): 7670, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509784

RESUMO

While autopsy studies identify many abnormalities in the central nervous system (CNS) of subjects dying with neurological diseases, without their quantification in living subjects across the lifespan, pathogenic processes cannot be differentiated from epiphenomena. Using machine learning (ML), we searched for likely pathogenic mechanisms of multiple sclerosis (MS). We aggregated cerebrospinal fluid (CSF) biomarkers from 1305 proteins, measured blindly in the training dataset of untreated MS patients (N = 129), into models that predict past and future speed of disability accumulation across all MS phenotypes. Healthy volunteers (N = 24) data differentiated natural aging and sex effects from MS-related mechanisms. Resulting models, validated (Rho 0.40-0.51, p < 0.0001) in an independent longitudinal cohort (N = 98), uncovered intra-individual molecular heterogeneity. While candidate pathogenic processes must be validated in successful clinical trials, measuring them in living people will enable screening drugs for desired pharmacodynamic effects. This will facilitate drug development making, it hopefully more efficient and successful.


Assuntos
Esclerose Múltipla , Doenças do Sistema Nervoso , Humanos , Esclerose Múltipla/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Modelos Moleculares
2.
Mult Scler Relat Disord ; 58: 103499, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35030368

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a chronic neuroinflammatory disorder, in which activated immune cells directly or indirectly induce demyelination and axonal degradation. Inflammatory stimuli also change the phenotype of astrocytes, making them neurotoxic. The resulting 'toxic astrocyte' phenotype has been observed in animal models of neuroinflammation and in MS lesions. Proteins secreted by toxic astrocytes are elevated in the cerebrospinal fluid (CSF) of MS patients and reproducibly correlate with the rates of accumulation of neurological disability and brain atrophy. This suggests a pathogenic role for neurotoxic astrocytes in MS. METHODS: Here, we applied a commercially available library of small molecules that are either Food and Drug Administration-approved or in clinical development to an in vitro model of toxic astrogliosis to identify drugs and signaling pathways that inhibit inflammatory transformation of astrocytes to a neurotoxic phenotype. RESULTS: Inhibitors of three pathways related to the endoplasmic reticulum stress: (1) proteasome, (2) heat shock protein 90 and (3) mammalian target of rapamycin reproducibly decreased inflammation-induced conversion of astrocytes to toxic phenotype. Dantrolene, an anti-spasticity drug that inhibits calcium release through ryanodine receptors expressed in the endoplasmic reticulum of central nervous system cells, also exerted inhibitory effect at in vivo achievable concentrations. Finally, we established CSF SERPINA3 as a relevant pharmacodynamic marker for inhibiting toxic astrocytes in clinical trials. CONCLUSION: Drug library screening provides mechanistic insight into the generation of toxic astrocytes and identifies candidates for immediate proof-of-principle clinical trial(s).


Assuntos
Esclerose Múltipla , Preparações Farmacêuticas , Animais , Astrócitos/patologia , Sistema Nervoso Central/metabolismo , Gliose/tratamento farmacológico , Humanos , Esclerose Múltipla/patologia , Preparações Farmacêuticas/metabolismo
3.
Front Neurol ; 11: 565957, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329307

RESUMO

Quantifying cell subpopulations in biological fluids aids in diagnosis and understanding of the mechanisms of injury. Although much has been learned from cerebrospinal fluid (CSF) flow cytometry in neuroimmunological disorders, such as multiple sclerosis (MS), previous studies did not contain enough healthy donors (HD) to derive age- and gender-related normative data and sufficient heterogeneity of other inflammatory neurological disease (OIND) controls to identify MS specific changes. The goals of this blinded training and validation study of MS patients and embedded controls, representing 1,240 prospectively acquired paired CSF/blood samples from 588 subjects was (1) to define physiological age-/gender-related changes in CSF cells, (2) to define/validate cellular abnormalities in blood and CSF of untreated MS through disease duration (DD) and determine which are MS-specific, and (3) to compare effect(s) of low-efficacy (i.e., interferon-beta [IFN-beta] and glatiramer acetate [GA]) and high-efficacy drugs (i.e., natalizumab, daclizumab, and ocrelizumab) on MS-related cellular abnormalities using propensity score matching. Physiological gender differences are less pronounced in the CSF compared to blood, and age-related changes suggest decreased immunosurveillance of CNS by activated HLA-DR+T cells associated with natural aging. Results from patient samples support the concept of MS being immunologically single disease evolving in time. Initially, peripherally activated innate and adaptive immune cells migrate into CSF to form MS lesions. With progression, T cells (CD8+ > CD4+), NK cells, and myeloid dendritic cells are depleted from blood as they continue to accumulate, together with B cells, in the CSF and migrate to CNS tissue, forming compartmentalized inflammation. All MS drugs inhibit non-physiological accumulation of immune cells in the CSF. Although low-efficacy drugs tend to normalize it, high-efficacy drugs overshoot some aspects of CSF physiology, suggesting impairment of CNS immunosurveillance. Comparable inhibition of MS-related CSF abnormalities advocates changes within CNS parenchyma responsible for differences in drug efficacy on MS disability progression. Video summarizing all results may become useful educational tool.

4.
Ann Hum Genet ; 84(1): 1-10, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31396954

RESUMO

No genetic modifiers of multiple sclerosis (MS) severity have been independently validated, leading to a lack of insight into genetic determinants of the rate of disability progression. We investigated genetic modifiers of MS severity in prospectively acquired training (N = 205) and validation (N = 94) cohorts, using the following advances: (1) We focused on 113 genetic variants previously identified as related to MS severity; (2) We used a novel, sensitive outcome: MS Disease Severity Scale (MS-DSS); (3) Instead of validating individual alleles, we used a machine learning technique (random forest) that captures linear and complex nonlinear effects between alleles to derive a single Genetic Model of MS Severity (GeM-MSS). The GeM-MSS consists of 19 variants located in vicinity of 12 genes implicated in regulating cytotoxicity of immune cells, complement activation, neuronal functions, and fibrosis. GeM-MSS correlates with MS-DSS (r = 0.214; p = 0.043) in a validation cohort that was not used in the modeling steps. The recognized biology identifies novel therapeutic targets for inhibiting MS disability progression.


Assuntos
Biomarcadores/análise , Predisposição Genética para Doença , Deficiência Intelectual/diagnóstico , Modelos Genéticos , Esclerose Múltipla/fisiopatologia , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Avaliação da Deficiência , Progressão da Doença , Feminino , Seguimentos , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/genética , Prognóstico , Estudos Prospectivos , Estados Unidos/epidemiologia , Adulto Jovem
5.
Front Neurol ; 10: 1232, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824409

RESUMO

Objective: To test the hypothesis that Multiple Sclerosis (MS) patients have increased peripheral inflammation compared to healthy donors and that this systemic activation of the immune system, reflected by acute phase reactants (APRs) measured in the blood, contributes to intrathecal inflammation, which in turn contributes to the development of disability in MS. Methods: Eight serum APRs measured in a prospectively-collected cross-sectional cohort with a total of 51 healthy donors and 291 untreated MS patients were standardized and assembled into related biomarker clusters to derive global measures of systemic inflammation. The resulting APR clusters were compared between diagnostic categories and correlated to equivalently-derived cerebrospinal fluid (CSF) biomarkers of innate and adaptive immunity. Finally, correlations were calculated between biomarkers of systemic and intrathecal inflammation and MS severity measures, which predict future rates of disability progression. Results: While two blood APR clusters were elevated in MS patients, only one exhibited a weak correlation with MS severity. All CSF inflammation clusters, except CSF albumin, correlated with at least one measure of MS severity, with biomarkers of humoral adaptive immunity exhibiting the strongest correlations, especially in Progressive MS. Conclusion: Systemic inflammation does not appear to be strongly associated with intrathecal inflammation in MS. Positive correlations between markers of intrathecal inflammation, especially of humoral immunity, with MS severity measures support a pathogenic role of intrathecal (compartmentalized) inflammation in central nervous system tissue destruction, including in Progressive MS.

6.
Mult Scler Relat Disord ; 28: 34-43, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30553167

RESUMO

BACKGROUND: Once multiple sclerosis (MS) reaches the progressive stage, immunomodulatory treatments have limited efficacy. This suggests that processes other than activation of innate immunity may at least partially underlie disability progression during late stages of MS. Pathology identified these alternative processes as aberrant activation of astrocytes and microglia, and subsequent degeneration of oligodendrocytes and neurons. However, we mostly lack biomarkers that could measure central nervous system (CNS) cell-specific intrathecal processes in living subjects. This prevents differentiating pathogenic processes from an epiphenomenon. Therefore, we sought to develop biomarkers of CNS cell-specific processes and link them to disability progression in MS. METHODS: In a blinded manner, we measured over 1000 proteins in the cerebrospinal fluid (CSF) of 431 patients with neuroimmunological diseases and healthy volunteers using modified DNA-aptamers (SOMAscan®). We defined CNS cell type-enriched clusters using variable cluster analysis, combined with in vitro modeling. Differences between diagnostic categories were identified in the training cohort (n = 217) and their correlation to disability measures were assessed; results were validated in an independent validation cohort (n = 214). RESULTS: Astrocyte cluster 8 (MMP7, SERPINA3, GZMA and CLIC1) and microglial cluster 2 (DSG2 and TNFRSF25) were reproducibly elevated in MS and had a significant and reproducible correlation with MS severity suggesting their pathogenic role. In vitro studies demonstrated that proteins of astrocyte cluster 8 are noticeably released upon stimulation with proinflammatory stimuli and overlap with the phenotype of recently described neuro-toxic (A1) astrocytes. CONCLUSION: Microglial activation and toxic astrogliosis are associated with MS disease process and may partake in CNS tissue destruction. This hypothesis should be tested in new clinical trials.


Assuntos
Gliose/líquido cefalorraquidiano , Esclerose Múltipla/líquido cefalorraquidiano , Adolescente , Adulto , Idoso , Astrócitos/metabolismo , Biomarcadores/líquido cefalorraquidiano , Técnicas de Cultura de Células , Células Cultivadas , Análise por Conglomerados , Feminino , Humanos , Masculino , Microglia/metabolismo , Pessoa de Meia-Idade , Estudos Prospectivos , Índice de Gravidade de Doença , Adulto Jovem
7.
Ann Clin Transl Neurol ; 5(10): 1241-1249, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30349859

RESUMO

OBJECTIVE: To develop a sensitive neurological disability scale for broad utilization in clinical practice. METHODS: We employed advances of mobile computing to develop an iPad-based App for convenient documentation of the neurological examination into a secure, cloud-linked database. We included features present in four traditional neuroimmunological disability scales and codified their automatic computation. By combining spatial distribution of the neurological deficit with quantitative or semiquantitative rating of its severity we developed a new summary score (called NeurEx; ranging from 0 to 1349 with minimal measurable change of 0.25) and compared its performance with clinician- and App-computed traditional clinical scales. RESULTS: In the cross-sectional comparison of 906 neurological examinations, the variance between App-computed and clinician-scored disability scales was comparable to the variance between rating of the identical neurological examination by multiple sclerosis (MS)-trained clinicians. By eliminating rating ambiguity, App-computed scales achieved greater accuracy in measuring disability progression over time (n = 191 patients studied over 880.6 patient-years). The NeurEx score had no apparent ceiling effect and more than 200-fold higher sensitivity for detecting a measurable yearly disability progression (i.e., median progression slope of 8.13 relative to minimum detectable change of 0.25) than Expanded Disability Status Scale (EDSS) with a median yearly progression slope of 0.071 that is lower than the minimal measurable change on EDSS of 0.5. INTERPRETATION: NeurEx can be used as a highly sensitive outcome measure in neuroimmunology. The App can be easily modified for use in other areas of neurology and it can bridge private practice practitioners to academic centers in multicenter research studies.

8.
J Toxicol Environ Health A ; 81(19): 1015-1027, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30230971

RESUMO

An increased risk for Systemic Autoimmune Diseases (SAID) was reported in the population of Libby, Montana, where extensive exposure to asbestiform amphiboles occurred through mining and use of asbestiform fiber-laden vermiculite. High frequencies of antinuclear autoantibodies (ANA) were detected in individuals and mice exposed to Libby Asbestiform Amphiboles (LAA). Among the 6603 individuals who have undergone health screening at the Center for Asbestos Related Diseases (CARD, Libby MT), the frequencies of rheumatoid arthritis, systemic lupus erythematosus, sarcoidosis, and systemic sclerosis are significantly higher than expected prevalence in the United States. While these data support the hypothesis that LAA can trigger autoimmune responses, evidence suggests that chrysotile asbestos does not. Serological testing was therefore performed in subjects exposed to LAA or predominantly chrysotile (New York steamfitters) using multiplexed array technologies. Analyses were performed in order to determine a) autoantibody profiles in each cohort, and b) whether the two populations could be distinguished through predictive modeling. Analysis using perMANOVA testing confirmed a significant difference between autoantibody profiles suggesting differential pathways leading to autoantibody formation. ANA were more frequent in the LAA cohort. Specific autoantibodies more highly expressed with LAA-exposure were to histone, ribosomal P protein, Sm/Ribonucleoproteins, and Jo-1 (histidyl tRNA synthetase). Myositis autoantibodies more highly expressed in the LAA cohort were Jo-1, PM100, NXP2, and Mi2a. Predictive modeling demonstrated that anti-histone antibodies were most predictive for LAA exposure, and anti-Sm was predictive for the steamfitters' exposure. This emphasizes the need to consider fiber types when evaluating risk of SAID with asbestos exposure.


Assuntos
Amiantos Anfibólicos/efeitos adversos , Asbestos Serpentinas/efeitos adversos , Autoanticorpos/sangue , Exposição Ocupacional/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Asbestos Serpentinas/imunologia , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Montana , New York , Adulto Jovem
9.
Front Neurol ; 8: 598, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176958

RESUMO

The search for the genetic foundation of multiple sclerosis (MS) severity remains elusive. It is, in fact, controversial whether MS severity is a stable feature that predicts future disability progression. If MS severity is not stable, it is unlikely that genotype decisively determines disability progression. An alternative explanation tested here is that the apparent instability of MS severity is caused by inaccuracies of its current measurement. We applied statistical learning techniques to a 902 patient-years longitudinal cohort of MS patients, divided into training (n = 133) and validation (n = 68) sub-cohorts, to test four hypotheses: (1) there is intra-individual stability in the rate of accumulation of MS-related disability, which is also influenced by extrinsic factors. (2) Previous results from observational studies are negatively affected by the insensitive nature of the Expanded Disability Status Scale (EDSS). The EDSS-based MS Severity Score (MSSS) is further disadvantaged by the inability to reliably measure MS onset and, consequently, disease duration (DD). (3) Replacing EDSS with a sensitive scale, i.e., Combinatorial Weight-Adjusted Disability Score (CombiWISE), and substituting age for DD will significantly improve predictions of future accumulation of disability. (4) Adjusting measured disability for the efficacy of administered therapies and other relevant external features will further strengthen predictions of future MS course. The result is a MS disease severity scale (MS-DSS) derived by conceptual advancements of MSSS and a statistical learning method called gradient boosting machines (GBM). MS-DSS greatly outperforms MSSS and the recently developed Age Related MS Severity Score in predicting future disability progression. In an independent validation cohort, MS-DSS measured at the first clinic visit correlated significantly with subsequent therapy-adjusted progression slopes (r = 0.5448, p = 1.56e-06) measured by CombiWISE. To facilitate widespread use of MS-DSS, we developed a free, interactive web application that calculates all aspects of MS-DSS and its contributing scales from user-provided raw data. MS-DSS represents a much-needed tool for genotype-phenotype correlations, for identifying biological processes that underlie MS progression, and for aiding therapeutic decisions.

10.
Ann Neurol ; 82(5): 795-812, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29059494

RESUMO

OBJECTIVE: Biomarkers aid diagnosis, allow inexpensive screening of therapies, and guide selection of patient-specific therapeutic regimens in most internal medicine disciplines. In contrast, neurology lacks validated measurements of the physiological status, or dysfunction(s) of cells of the central nervous system (CNS). Accordingly, patients with chronic neurological diseases are often treated with a single disease-modifying therapy without understanding patient-specific drivers of disability. Therefore, using multiple sclerosis (MS) as an example of a complex polygenic neurological disease, we sought to determine whether cerebrospinal fluid (CSF) biomarkers are intraindividually stable, cell type-, disease- and/or process-specific, and responsive to therapeutic intervention. METHODS: We used statistical learning in a modeling cohort (n = 225) to develop diagnostic classifiers from DNA-aptamer-based measurements of 1,128 CSF proteins. An independent validation cohort (n = 85) assessed the reliability of derived classifiers. The biological interpretation resulted from in vitro modeling of primary or stem cell-derived human CNS cells and cell lines. RESULTS: The classifier that differentiates MS from CNS diseases that mimic MS clinically, pathophysiologically, and on imaging achieved a validated area under the receiver operating characteristic curve (AUROC) of 0.98, whereas the classifier that differentiates relapsing-remitting from progressive MS achieved a validated AUROC of 0.91. No classifiers could differentiate primary progressive from secondary progressive MS better than random guessing. Treatment-induced changes in biomarkers greatly exceeded intraindividual and technical variabilities of the assay. INTERPRETATION: CNS biological processes reflected by CSF biomarkers are robust, stable, disease specific, or even disease stage specific. This opens opportunities for broad utilization of CSF biomarkers in drug development and precision medicine for CNS disorders. Ann Neurol 2017;82:795-812.


Assuntos
Proteínas do Líquido Cefalorraquidiano/metabolismo , Esclerose Múltipla Crônica Progressiva/líquido cefalorraquidiano , Esclerose Múltipla Crônica Progressiva/diagnóstico , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Adolescente , Adulto , Idoso , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Linhagem Celular , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA