Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(19): 5231-5238, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38718187

RESUMO

A sterically encumbered trans-A2B-corrole possessing a perylenediimide (PDI) scaffold in close proximity to the macrocycle has been synthesized via a straightforward route. Electronic communication as probed via steady-state absorption or cyclic voltammetry is weak in the ground state, in spite of the corrole ring and PDI being bridged by an o-phenylene unit. The TDDFT excited-state geometry optimization suggests after excitation the interchromophoric distance is markedly reduced, thus enhancing the through-space electronic coupling between the corrole and the PDI. This is corroborated by the strong deviation of the emission spectrum originating from both PDI and corrole in the dyad. Selective excitation of both donor and acceptor units triggers efficient sub-picosecond electron transfer and hole transfer, respectively, followed by fast charge recombination. In comparison to previously studied corrole-PDI dyads, both charge separation and charge recombination occur faster, because of the structural relaxation in the excited state.

2.
JACS Au ; 3(7): 1918-1930, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37502148

RESUMO

Photosensitizers that display "unusual" emission from upper electronically excited states offer possibilities for initiating higher-energy processes than what the governing Kasha's rule postulates. Achieving conditions for dual fluorescence from multiple states of the same species requires molecular design and conditions that favorably tune the excited-state dynamics. Herein, we switch the position of the electron-donating NMe2 group around the core of benzo[g]coumarins (BgCoum) and tune the electronic coupling and the charge-transfer character of the fluorescent excited states. For solvents with intermediate polarity, three of the four regioisomers exhibit fluorescence from two different excited states with bands that are well separated in the visible and the near-infrared spectral regions. Computational analysis, employing ab initio methods, reveals that the orientation of an ester on the pyrone ring produces two conformers responsible for the observed dual fluorescence. Studies with solid solvating media, which restricts the conformational degrees of freedom, concur with the computational findings. These results demonstrate how "seemingly inconsequential" auxiliary substituents, such as the esters on the pyrone coumarin rings, can have profound effects leading to "anti-Kasha" photophysical behavior important for molecular photonics, materials engineering, and solar-energy science.

3.
Phys Chem Chem Phys ; 25(17): 12500-12514, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37097614

RESUMO

Four tris(salicylideneanilines) (TSANs) with gradually increased steric interactions between the keto-enamine moiety and neighbouring phenyl substituent are presented. The steric interactions are induced by placing two alkyl groups at the ortho position in the N-aryl substituent. The impact of the steric effect over the radiative channels of deactivation of the excited state was evaluated through spectroscopic measurements and theoretical calculations using ab initio techniques. Our results show that the emission occurring after excited state intramolecular proton transfer (ESIPT) is favoured by placing the bulky groups in the ortho position of the N-phenyl ring of the TSAN. However, our TSANs seem to offer the opportunity to obtain a pronounced emission band at higher energy, significantly increasing the coverage of the visible spectrum, resulting in the enhancement of the dual emissive properties of tris(salicylideneanilines). Thus, TSANs may be promising molecules capable of white-like emission for use in organic electronic devices such as white OLEDs.

4.
Phys Chem Chem Phys ; 25(3): 1903-1922, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36541431

RESUMO

The application of various density functional approximations (DFAs) and an emphasis on popular methods without any consensus have prevailed in computational studies dedicated to carbocations. More importantly, an extensive and rigorous benchmark investigation on density functionals for the class is still lacking. To close this gap, we present a comprehensive benchmark study of quantum chemical methods on a series of classical and nonclassical carbocations, the CARBO33 dataset. We evaluate a total of 107 DFT methods from all rungs giving particular attention to double hybrid density functionals as the potential of the class has been largely undermined in the context of carbocations. To support our findings, DLPNO-CCSD(T) at the complete basis set (CBS) limit and W1-F12 are used as reference methods. Our results indicate that the composite CBS-QB3 method performs poorly and should not be adopted for target energies. Oftentimes, the tested DFAs of a lower rung perform better than several DFAs in a higher rung of Perdew's "Jacob's ladder". Nonetheless, double hybrids DSD-PBEP86-NL and ωB97X-2-D3(BJ) stand out by showing the overall best performance. Among the hybrids evaluated, about half of them show mean absolute deviation (MAD) below 1.1 kcal mol-1, including the popular hybrids M06-2X and mPW1PW91. In this family, MN15-D3(BJ) performs particularly well (MAD = 0.77 kcal mol-1) displaying reliable results across various tests. Highly popular B3LYP exhibited one of the worst performances (MAD = 4.74 kcal mol-1), and we do not recommend its application to carbocations. We also assess the 24 general-purpose basis sets of single- up to quadruple-ζ quality. The best compromise between accuracy and computational cost is achieved with cc-pVTZ followed by def2-TZVP. Computations on larger structures of general interest, including terpene carbocations, are also presented for selected DFT methods confirming general trends in the results.

5.
J Chem Theory Comput ; 17(11): 6876-6885, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34637284

RESUMO

A benchmark density functional theory (DFT) study of 1H NMR chemical shifts for data sets comprising 200 chemical shifts, including complex natural products, has been carried out to assess the performance of DFT methods. Two new benchmark data sets, NMRH33 and NMRH148, have been established. The meta-GGA revTPSS performs remarkably well against the NMRH33 benchmark set (mean absolute deviation (MAD), 0.10 ppm; maximum deviation (max), 0.26 ppm) with the smallest MAD of all evaluated functionals. The best-performing double-hybrid density functional (DHDF), revDSD-BLYP (MAD, 0.16 ppm; max, 0.35 ppm), performs similarly to hybrid-GGA methods (e.g., mPW1PW91/6-311G(d) (MAD, 0.15 ppm; max, 0.36 ppm)), but at a considerably higher computational cost. The results indicate that currently available double-hybrid DFT methods offer no benefit over GGA (including hybrid and meta) functionals in the calculation of 1H NMR chemical shifts.

6.
J Org Chem ; 86(9): 6148-6159, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33830755

RESUMO

The tandem process of phenol addition to a cyclic α,ß-unsaturated ester followed by intramolecular transesterification and [1,5] sigmatropic rearrangement affords a series of helical coumarins based upon a previously unknown 3-amino-7-hydroxybenzo[3,4]cyclohepta[1,2-c]chromen-6-one core. These novel polarized coumarins, possessing a ß-ketoester moiety, have been employed to synthesize more rigid and helical coumarin-pyrazolones, which display green fluorescence. The enhanced emission of coumarin-pyrazolones in polar solvents depends on the nature of the S1 state. The coumarin-pyrazolones are predicted to have two vertical states close in energy: a weakly absorbing S1 (1LE) followed by a bright S2 state (1CT). In polar solvents, the 1CT can be stabilized below the 1LE and may become the fluorescent state. Solvatochromism of the fluorescence spectra confirms this theoretical prediction. The presence of an N-H···O═C intramolecular hydrogen bond in these coumarin-pyrazolone hybrids facilitates excited-state intramolecular proton transfer (ESIPT). This process leads to a barrierless conical intersection with the ground electronic state and opens a radiationless deactivation channel effectively competing with fluorescence. Solvent stabilization of the CT state increases the barrier for ESIPT and decreases the efficiency of the nonradiative channel. This results in the observed correlation between solvatochromism and an increase of fluorescence intensity in polar solvents.


Assuntos
Cumarínicos , Prótons , Corantes , Solventes , Espectrometria de Fluorescência
7.
Phys Chem Chem Phys ; 23(2): 1156-1164, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33350404

RESUMO

The role of electron acceptor/donor group substitution on the photophysical properties of tris(salicylideneanilines) (TSANs) was investigated. These compounds were synthesised and characterised through spectroscopic techniques including steady state absorption and emission spectroscopies. Their photochemical reaction mechanisms and properties were explored with the aid of ab initio methods of quantum chemistry. The obtained results allow us to verify the dependence of multiple emission bands on the substitution of electron donating and accepting groups to the tris(salicylideneaniline) core. The results also stress the differences in phosphorescence behaviour of TSANs for which this type of emission has not been reported so far.

8.
J Phys Chem A ; 125(1): 99-105, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33372791

RESUMO

The first-order hyperpolarizability of π-conjugated organic molecules is of particular interest for the fabrication of electro-optical modulators. Thus, we investigated the relationship between the molecular structure and the incoherent second-order nonlinear optical response (ßHRS) of four salicylidene derivatives (salophen, [Zn(salophen)(OH2)], 3,4-benzophen, [Zn(3,4-benzophen)(OH2)]) dissolved in DMSO. For that, we employed the Hyper-Rayleigh Scattering technique with picosecond pulse trains. Our experimental results pointed out dynamic ßHRS values between 32.0 ± 4.8 × 10-30 cm5/esu and 58.5 ± 8.0 × 10-30 cm5/esu at 1064 nm, depending on the molecular geometry of the salicylidene molecules. More specifically, the outcomes indicate a considerable increase of ßHRS magnitude (∼30%) when in the ligands are incorporated the Zn(II) ion. We ascribed such results to the rise of the planarity of the π-conjugated backbone of the chromophores caused by the Zn(II). Furthermore, we observed an increase of ∼50% in dynamic ßHRS when there is a replacement of one hydrogen atom (salophen molecule) by an acetophenone group (3,4-benzophen). This result is related to the increase of the effective π-electron number and the higher charge transfer induced at the excited state. All these findings were interpreted and supported in the light of time-dependent density functional theory (DFT) calculations. Solvent effects were considered in the quantum chemical calculations using the integral equation formalism variant of the polarizable continuum model.

9.
Phys Chem Chem Phys ; 22(12): 6698-6705, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32162638

RESUMO

A series of different electron-deficient aromatic substituents were used to investigate the role of the electron-acceptor strength on the photophysical properties of salicylaldimine derivatives. These molecules were synthesised and characterised through X-ray diffraction, absorption and emission spectroscopies. Their photochemical reaction mechanisms and properties were explored with the aid of ab initio methods of quantum chemistry. Our results allow us to clarify the dependence of the multiple emission bands on the polarity of the solvent and on the substitution of electron donating and accepting groups to the salicylaldimine core.

10.
J Mol Model ; 25(4): 89, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30847605

RESUMO

In this work, we present a computational study on the antioxidant potential of myricetin 3-O-α-L-rhamnopyranoside (Compound M3) and myricetin 4'-O-α-L-rhamnopyranoside (Compound M4'). Structural parameters, bond dissociation enthalpies (BDEs), ionization potentials (IPs), proton dissociation enthalpies (PDEs), proton affinities (PAs), and electron transfer enthalpies (ETEs), which are properties connected with different mechanisms related to antioxidant activity, were determined using density functional theory (DFT) with B3LYP, LC-ωPBE, M06-2X, and BMK functionals along with the 6-311G(d,p) and 6-311+G(d,p) basis sets in the gas phase, water, and pentylethanoate. The values obtained were compared with results previously available in the literature for myricetin (the parent molecule and a well-known antioxidant) and myricetin 3,4'-di-O-α-L-rhamnopyranoside (Compound M3,4'). As the BDEs are considerably lower than the IPs, the HAT mechanism is preferred over SET for the compounds M3 and M4'. The present study indicates Compound M3 as having its lowest bond dissociation enthalpy from the several different OH groups with similar value to the lowest for myricetin (74.72 kcal/mol versus 74.8 kcal/mol, respectively, at the B3LYP/6-311G(d,p) level of theory in the gas phase) and, thus, presenting antioxidant potential as good as its parent molecule. On the other hand, Compound M4' presented 78.97 kcal/mol as the lowest BDE at the B3LYP/6-311G(d,p) level of theory in the gas phase, that is very close to the 78.34 kcal/mol computed using the same approach for Compound M3,4'. Therefore, the present investigation indicated Compound M4' as being a slightly inferior antioxidant (with antioxidant potential comparable to Compound M3,4') than Compound M3. In addition, the inclusion of the sugar moiety studied here in the position 4'-ArOH of myricetin seems to have a more marked impact (downward) on the antioxidant activity than the glycosylation in the position 3-ArOH.

11.
Phys Chem Chem Phys ; 20(39): 25164-25168, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30272060

RESUMO

Photochemical reactions of tris(salicylideneaniline) were explored by theoretical investigation of relevant potential energy profiles using ab initio methods. A photophysical mechanism was proposed, in which an optical excitation leads to the formation of several tautomeric species in the first excited singlet state, allowing emission over a broad range of wavelengths.

12.
J Adv Res ; 9: 27-33, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30046483

RESUMO

The effect of the coordination of a Ni(II) ion on the electronic and magnetic properties of the ligand salophen were experimentally and theoretically evaluated. The complex [Ni(salophen)] was synthesized and characterized through FTIR and an elemental analysis. Spectral data obtained using DMSO as a solvent showed that the ligand absorption profile was significantly disturbed after the coordination of the metal atom. In addition to a redshift of the salophen ligand absorption bands, mainly composed by π → π∗ electronic transitions, additional bands of around 470 nm were observed, resulting in a partial metal-to-ligand charge transfer. Furthermore, a significant increment of its band intensities was observed, favoring a more intense absorption in a broader range of the visible spectrum, which is a desired characteristic for applications in the field of organic electronics. This finding is related to an increment of the planarity and consequent electron delocalization of the macrocycle in the complex, which was estimated by the calculation of the current strengths at the PBE0/cc-pVTZ (Dyall.v3z for Ni(II)) level.

13.
J Mol Model ; 24(6): 133, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29752542

RESUMO

In this work, we present a computational study on the antioxidant potential of myricetin 3,4[Formula: see text]-di-O-α-L-rhamnopyranoside (Compound M). A density functional theory (DFT) approach with the B3LYP and LC-ωPBE functionals and with both the 6-311G(d,p) and 6-311+G(d,p) basis sets was used. The focus of the investigation was on the structural and energetic parameters including both bond dissociation enthalpies (BDEs) and ionization potentials (IPs), which provide information on the potential antioxidant activity. The properties computed were compared with BDEs and IPs available in the literature for myricetin, a compound well known for presenting antioxidant activity (and the parent molecule of the compound of interest in the present work). Myricetin 3,4[Formula: see text]-di-O-α-L-rhamnopyranoside presented the lowest BDE to be 79.13 kcal/mol (as determined using B3LYP/6-311G(d,p) in water) while myricetin has a quite similar value (within 3.4 kcal/mol). IPs computed in the gas phase [B3LYP/6-311G(d,p)] are 157.18 and 161.4 kcal/mol for myricetin 3,4[Formula: see text]-di-O-α-L-rhamnopyranoside and myricetin, respectively. As the values of BDEs are considerably lower than the ones probed for IPs (in the gas phase or in any given solvent environment), the hydrogen atom transfer mechanism is preferred over the single electron transfer mechanism. The BDEs obtained suggest that myricetin 3,4[Formula: see text]-di-O-α-L-rhamnopyranoside can present antioxidant potential as good as the parent molecule myricetin (a well-known antioxidant). Therefore, experimental tests on the antioxidant activity of Compound M are encouraged.


Assuntos
Antioxidantes/química , Simulação por Computador , Flavonoides/química , Glucosídeos/química
14.
J Phys Chem A ; 115(43): 11988-97, 2011 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21910497

RESUMO

In this work, we investigated the UV-vis spectra of the [Ru(bipy)(2)(MPyTPP)Cl](+) (MPyTPP = 5-pyridyl-15,20,25-triphenylporphyrin) complex and its related species [Ru(bipy)(2)(py)Cl](+) and MPyTPP, by using time-dependent density functional theory and a set of functionals (B3LYP, M05, MPWB1K, and PBE0) in chloroform with the basis set 6-31++G(d,p) for nonmetal atoms and the pseudopotential LANL2DZ for Ru. Practically no geometrical changes are observed in the Ru environment when py ligand is replaced by MPyTPP. This replacement favors the electronic redistribution from bipy ligands to Ru, and from the metal to MPyTPP ligand, as indicated by NBO analysis. We found that M05 functional predicts very well the UV-vis spectra, as it shows a low deviation with respect to the experimental data, with a maximum error of 0.19 eV (11 nm). M05 theoretical electronic spectrum of [Ru(bipy)(2)(MPyTPP)Cl](+) complex indicates that the presence of the Ru complex does not alter Q porphyrin bands, while charge transfer bands from Ru to bipy and porphyrin ligands mixes up in the region close to the porphyrin Soret band. Theoretical analysis allows the decomposition of this broad experimental band into specific ones identifying the Soret band and new metal to ligand charge transfers toward porphyrin at 425 and 478 nm, which were not possible in none of the moieties MPyTPP and [Ru(bipy)(2)(Py)Cl](+) complex. In the UV region, the most intense intraligand band of bipy ligands becomes slightly blue-shifted both in the experimental and in the theoretical spectrum of [Ru(bipy)(2)(MPyTPP)Cl](+) complex compared to that in [Ru(bipy)(2)(py)Cl](+) complex. Some of the bands of [Ru(bipy)(2)(MPyTPP)Cl](+) showed in this theoretical study may have practical applications. That is the case for the band at 478 nm, with potential use in PDT, and those more energetic at 348 and 329 nm, which could help in the cleavage mechanism of DNA performed by this ruthenium complex.


Assuntos
Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Porfirinas/química , Piridinas/química , Teoria Quântica , Rutênio/química , Elétrons , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA