RESUMO
Microchromosomes, once considered unimportant elements of the genome, represent fundamental building blocks of bird karyotypes. Shorebirds (Charadriiformes) comprise a wide variety of approximately 390 species and are considered a valuable model group for biological studies. Despite this variety, cytogenetic analysis is still very scarce in this bird order. Thus, the aim of this study was to provide insight into the Charadriiformes karyotype, with emphasis on microchromosome evolution in three species of shorebirds-Calidris canutus, Jacana jacana, and Vanellus chilensis-combining classical and molecular approaches. Cross-species FISH mapping applied two BAC probes for each microchromosome, GGA10-28 (except GGA16). The experiments revealed different patterns of microchromosome organization in the species investigated. Hence, while in C. canutus, we found two microchromosomes involved in chromosome fusions, they were present as single pairs in V. chilensis. We also described a new chromosome number for C. canutus (2n = 92). Hence, this study contributed to the understanding of genome organization and evolution of three shorebird species.
RESUMO
Furnariidae (ovenbirds) is one of the most diversified families in the Passeriformes order and Suboscines suborder. Despite the great diversity of species, cytogenetic research is still in its early stages, restricting our knowledge of their karyotype evolution. We combined traditional and molecular cytogenetic analyses in three representative species, Synallaxis frontalis, Syndactyla rufosuperciliata, and Cranioleuca obsoleta, to examine the chromosomal structure and evolution of ovenbirds. Our findings revealed that all the species studied had the same diploid number (2n = 82). Differences in chromosomal morphology of some macrochromosomes indicate the presence of intrachromosomal rearrangements. Although the three species only had the 18S rDNA on one microchromosome pair, chromosomal mapping of six simple short repeats revealed a varied pattern of chromosome distribution among them, suggesting that each species underwent different repetitive DNA accumulation upon their divergence. The interspecific comparative genomic hybridization experiment revealed that the Furnariidae species investigated carry centromeric regions enriched in similar repetitive sequences, bolstering the Furnariidae family's karyotype conservation. Nonetheless, the outgroup species Turdus rufiventris (Turdidae) demonstrated an advanced stage of sequence divergence with hybridization signals that were almost entirely limited to a few microchromosomes. Overall, the findings imply that Furnariidae species have a high degree of chromosomal conservation, and we could also observe a differentiation of repetitive sequences in both Passeriformes suborders (Suboscines and Oscines).
RESUMO
The Saffron finch (Sicalis flaveola), a semi-domestic species, is tolerant of human proximity and nesting in roof spaces. Considering the importance of cytogenomic approaches in revealing different aspects of genomic organization and evolution, we provide detailed cytogenetic data for S. flaveola, including the standard Giemsa karyotype, C- and G-banding, repetitive DNA mapping, and bacterial artificial chromosome (BAC) FISH. We also compared our results with the sister groups, Passeriformes and Psittaciformes, bringing new insights into the chromosome and genome evolution of birds. The results revealed contrasting rates of intrachromosomal changes, highlighting the role of SSR (simple short repetition probes) accumulation in the karyotype reorganization. The SSRs showed scattered hybridization, but brighter signals were observed in the microchromosomes and the short arms of Z chromosome in S. flaveola. BACs probes showed conservation of ancestral syntenies of macrochromosomes (except GGA1), as well as the tested microchromosomes. The comparison of our results with previous studies indicates that the great biological diversity observed in Passeriformes was not likely accompanied by interchromosomal changes. In addition, although repetitive sequences often act as hotspots of genome rearrangements, Passeriformes species showed a higher number of signals when compared with the sister group Psittaciformes, indicating that these sequences were not involved in the extensive karyotype reorganization seen in the latter.
RESUMO
The distribution of 45S rDNA cluster in avian karyotypes varies in different aspects, such as position, number of bearer chromosomes, and bearers being macro- or microchromosomes. The present study investigated the patterns of variation in the 45S rDNA-bearer chromosomes of birds in order to understand the evolutionary dynamics of the cluster configuration and its contribution to the evolution of bird karyotypes. A total of 73 bird species were analyzed, including both published data and species for which rDNA-FISH was conducted for the first time. In most birds, the 45S rDNA clusters were located in a single pair of microchromosomes. Hence, the location of 45S rDNA in macrochromosomes, observed only in Neognathae species, seems to be a derived state, probably the result of chromosomal fusion between microchromosomes and distinct macrochromosomes. Additionally, the 45S rDNA was observed in multiple microchromosomes in different branches of the bird phylogeny, suggesting recurrence of dispersion processeses, such as duplications and translocations. Overall, this study indicated that the redistribution of the 45S rDNA sites in bird chromosomes followed different evolutionary trajectories with respect to each lineage of the class Aves.
RESUMO
Despite the richness of species in the Hirudinidae family, little is known about the genome organization of swallows. The Progne tapera species presents genetic and morphological difference when compared to other members of the same genus. Hence, the aims of this study were to analyze the chromosomal evolution of three species Progne tapera, Progne chalybea and Pygochelidon cyanoleuca - by comparative chromosome painting using two sets of probes, Gallus gallus and Zenaida auriculata, in order to determine chromosome homologies and the relationship between these species. All karyotypes exhibited 76 chromosomes with similar morphology, except for the 5th, 6th and 7th chromosome pairs in P. cyanoleuca. Additionally, comparative chromosome painting demonstrated the same hybridization pattern in the two Progne, which was similar to the putative avian ancestral karyotype, except for the centric fission in the first pair, as found in other Passeriformes. Thus, these data display a close relationship between the Progne species. Although P. cyanoleuca demonstrated the same fission in the first pair of the ancestral syntenic (GGA1), it also showed an additional chromosomal rearrangement for this species, namely a fusion with a microchromosome in the seventh pair.
RESUMO
The order Charadriiformes comprises three major clades: Lari and Scolopaci as sister group to Charadrii. Until now, only three Charadriiformes species have been studied by chromosome painting: Larus argentatus (Lari), Burhinus oedicnemus and Vanellus chilensis (Charadrii). Hence, there is a lack of information concerning the third clade, Scolapaci. Based on this, and to gain a better understanding of karyotype evolution in the order Charadriiformes, we applied conventional and molecular cytogenetic approaches in a species belonging to clade Scolopaci - the wattled jacana (Jacana jacana) - using Gallus gallus and Zenaida auriculata chromosome-specific probes. Cross-species evaluation of J. jacana chromosomes shows extensive genomic reshuffling within macrochromosomes during evolution, with multiple fission and fusion events, although the diploid number remains at high level (2n=82). Interestingly, this species does not have the GGA7-8 fusion, which was found in two representatives of Charadrii clade, reinforcing the idea that this fusion may be exclusive to the Charadrii clade. In addition, it is shown that the chromosome evolution in Charadriiformes is complex and resulted in species with typical and atypical karyotypes. The karyotypic features of Scolopaci are very different from those of Charadrii and Lari, indicating that after divergence, each suborder has undergone different chromosome rearrangements.
RESUMO
The Passeriformes is the most diverse and cytogenetically well-known clade of birds, comprising approximately 5,000 species. The sooty-fronted spinetail (Synallaxis frontalis Aves: Furnariidae) species, which belongs to the order Passeriformes, is typically found in South America, where it is widely distributed. Polymorphisms provide genetic variability, important for several evolutionary processes, including speciation and adaptation to the environment. The aim of this work was to analyze the possible cytotypes and systemic events involved in the species polymorphism. Of the sampled 19 individuals, two thirds were polymorphic, an event supposedly linked to mutations resulting from genomic evolution that can be transmitted hereditarily. A chromosomal polymorphism was detected between the 1st and 3rdpairs of autosomal macrochromosomes. This type of polymorphism is related to a pericentric inversion in regions involving chromosomal rearrangements. Differently from other polymorphism studies that report a link between polymorphic chromosomes and phenotypic changes, S. frontalis did not present any morphological variation in the sampled individuals.