Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Commun ; 14(1): 3972, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407557

RESUMO

Dysregulated fear reactions can result from maladaptive processing of trauma-related memories. In post-traumatic stress disorder (PTSD) and other psychiatric disorders, dysfunctional extinction learning prevents discretization of trauma-related memory engrams and generalizes fear responses. Although PTSD may be viewed as a memory-based disorder, no approved treatments target pathological fear memory processing. Hippocampal sharp wave-ripples (SWRs) and concurrent neocortical oscillations are scaffolds to consolidate contextual memory, but their role during fear processing remains poorly understood. Here, we show that closed-loop, SWR triggered neuromodulation of the medial forebrain bundle (MFB) can enhance fear extinction consolidation in male rats. The modified fear memories became resistant to induced recall (i.e., 'renewal' and 'reinstatement') and did not reemerge spontaneously. These effects were mediated by D2 receptor signaling-induced synaptic remodeling in the basolateral amygdala. Our results demonstrate that SWR-triggered closed-loop stimulation of the MFB reward system enhances extinction of fearful memories and reducing fear expression across different contexts and preventing excessive and persistent fear responses. These findings highlight the potential of neuromodulation to augment extinction learning and provide a new avenue to develop treatments for anxiety disorders.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Transtornos de Estresse Pós-Traumáticos , Ratos , Masculino , Animais , Medo/fisiologia , Extinção Psicológica/fisiologia , Memória/fisiologia , Rememoração Mental/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Transtornos da Memória
2.
Neuron ; 111(13): 2065-2075.e5, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164008

RESUMO

Although the etiology of major depressive disorder remains poorly understood, reduced gamma oscillations is an emerging biomarker. Olfactory bulbectomy, an established model of depression that reduces limbic gamma oscillations, suffers from non-specific effects of structural damage. Here, we show that transient functional suppression of olfactory bulb neurons or their piriform cortex efferents decreased gamma oscillation power in limbic areas and induced depression-like behaviors in rodents. Enhancing transmission of gamma oscillations from olfactory bulb to limbic structures by closed-loop electrical neuromodulation alleviated these behaviors. By contrast, silencing gamma transmission by anti-phase closed-loop stimulation strengthened depression-like behaviors in naive animals. These induced behaviors were neutralized by ketamine treatment that restored limbic gamma power. Taken together, our results reveal a causal link between limbic gamma oscillations and depression-like behaviors in rodents. Interfering with these endogenous rhythms can affect behaviors in rodent models of depression, suggesting that restoring gamma oscillations may alleviate depressive symptoms.


Assuntos
Transtorno Depressivo Maior , Bulbo Olfatório , Animais , Bulbo Olfatório/fisiologia , Roedores , Depressão/terapia , Neurônios
3.
Neurobiol Dis ; 178: 106025, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731682

RESUMO

Spike-and-wave discharges (SWDs), generated by the cortico-thalamo-cortical (CTC) network, are pathological, large amplitude oscillations and the hallmark of absence seizures (ASs). SWDs begin in a cortical initiation network in both humans and animal models, including the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), where it is located in the primary somatosensory cortex (S1). The behavioral manifestation of an AS occurs when SWDs spread from the cortical initiation site to the whole brain, however, the mechanisms behind this rapid propagation remain unclear. Here we investigated these processes beyond the principal CTC network, in higher-order (HO) thalamic nuclei (lateral posterior (LP) and posterior (PO) nuclei) since their diffuse connectivity and known facilitation of intracortical communications make these nuclei key candidates to support SWD generation and maintenance. In freely moving GAERS, multi-site LFP in LP, PO and multiple cortical regions revealed a novel feature of SWDs: during SWDs there are short periods (named SWD-breaks) when cortical regions far from S1, such the primary visual cortex (V1), become transiently unsynchronized from the ongoing EEG rhythm. Inactivation of HO nuclei with local muscimol injections or optogenetic perturbation of HO nuclei activity increased the occurrence of SWD-breaks and the former intervention also increased the SWD propagation-time from S1. The neural underpinnings of these findings were explored further by silicon probe recordings from single units of PO which uncovered two previously unknown groups of excitatory neurons based on their burst firing dynamics at SWD onset. Moreover, a switch from tonic to burst firing at SWD onset was shown to be an important feature since it was much less prominent for non-generalized events, i.e. SWDs that remained local to S1. Additionally, one group of neurons showed a reverse of this switch during SWD-breaks, demonstrating the importance of this firing pattern throughout the SWD. In summary, these results support the view that multiple HO thalamic nuclei are utilized at SWD onset and contribute to cortical synchrony throughout the paroxysmal discharge.


Assuntos
Epilepsia Tipo Ausência , Humanos , Ratos , Animais , Epilepsia Tipo Ausência/genética , Eletroencefalografia , Núcleos Talâmicos/fisiologia , Convulsões , Neurônios/fisiologia , Tálamo , Modelos Animais de Doenças
4.
Front Neural Circuits ; 15: 701080, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305537

RESUMO

The medial septum (MS), as part of the basal forebrain, supports many physiological functions, from sensorimotor integration to cognition. With often reciprocal connections with a broad set of peers at all major divisions of the brain, the MS orchestrates oscillatory neuronal activities throughout the brain. These oscillations are critical in generating sensory and emotional salience, locomotion, maintaining mood, supporting innate anxiety, and governing learning and memory. Accumulating evidence points out that the physiological oscillations under septal influence are frequently disrupted or altered in pathological conditions. Therefore, the MS may be a potential target for treating neurological and psychiatric disorders with abnormal oscillations (oscillopathies) to restore healthy patterns or erase undesired ones. Recent studies have revealed that the patterned stimulation of the MS alleviates symptoms of epilepsy. We discuss here that stimulus timing is a critical determinant of treatment efficacy on multiple time scales. On-demand stimulation may dramatically reduce side effects by not interfering with normal physiological functions. A precise pattern-matched stimulation through adaptive timing governed by the ongoing oscillations is essential to effectively terminate pathological oscillations. The time-targeted strategy for the MS stimulation may provide an effective way of treating multiple disorders including Alzheimer's disease, anxiety/fear, schizophrenia, and depression, as well as pain.


Assuntos
Encefalopatias/fisiopatologia , Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia , Estimulação Encefálica Profunda/métodos , Núcleos Septais/fisiopatologia , Animais , Encefalopatias/terapia , Epilepsia/fisiopatologia , Epilepsia/terapia , Humanos , Transtornos Mentais/fisiopatologia , Transtornos Mentais/terapia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA