Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
medRxiv ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38633774

RESUMO

Among 111 children presenting with bloody diarrhea in a multicenter study of molecular testing in US emergency departments, we found viral pathogens in 18%, bacteria in 48%, protozoa in 2%, and no pathogens detected in 38%.

2.
J Mol Diagn ; 25(12): 857-875, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37757952

RESUMO

The use of clinical molecular diagnostic methods for detecting microbial pathogens continues to expand and, in some cases, supplant conventional identification methods in various scenarios. Analytical and clinical benefits of multiplex molecular panels for the detection of respiratory pathogens have been demonstrated in various studies. The use of these panels in managing different patient populations has been incorporated into clinical guidance documents. The Association for Molecular Pathology's Infectious Diseases Multiplex Working Group conducted a review of the current benefits and challenges to using multiplex PCR for the detection of pathogens from gastrointestinal tract, central nervous system, lower respiratory tract, and joint specimens. The Working Group also discusses future directions and novel approaches to detection of pathogens in alternate specimen types, and outlines challenges associated with implementation of these multiplex PCR panels.


Assuntos
Doenças Transmissíveis , Patologia Molecular , Humanos , Estados Unidos , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Doenças Transmissíveis/diagnóstico
3.
medRxiv ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37577483

RESUMO

Background: Multiplex molecular diagnostic panels have greatly enhanced detection of gastrointestinal pathogens. However, data on the impact of these tests on clinical and patient-centered outcomes are limited. Methods: We conducted a prospective, multicenter, stepped-wedge trial to determine the impact of multiplex molecular testing at five academic children's hospitals in children presenting to the ED with acute gastroenteritis. Caregivers were interviewed on enrollment and again 7-10 days after enrollment to determine symptoms, risk factors, subsequent medical visits, and impact on family members. During the pre-intervention period, diagnostic testing was performed at the discretion of clinicians. During the intervention period, multiplex molecular testing was performed on all children with results available to clinicians. Primary outcome was return visits to a health care provider within 10 days of enrollment. Results: Potential pathogens were identified by clinician ordered tests in 19/571 (3.3%) in the pre-intervention period compared to 434/586 (74%) in the intervention period; clinically relevant pathogens were detected in 2.1% and 15% respectively. In the multivariate model adjusting for potential confounders, the intervention was associated with a 21% reduction in the odds of any return visit (OR 0.79; 95% CI 0.70-0.90). Appropriate treatment was prescribed in 11.3% compared to 19.6% during the intervention period(P=0.22). Conclusions: Routine molecular multiplex testing for all children presenting to the ED with AGE detected more clinically relevant pathogens and led to a 21% decrease in return visits. Additional research is needed to define patients most likely to benefit from testing.

4.
Transpl Infect Dis ; 25(6): e14113, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37594214

RESUMO

Recent advances in antimicrobial resistance detection have spurred the development of multiple assays that can accurately detect the presence of bacterial resistance from positive blood cultures, resulting in faster institution of effective antimicrobial therapy. Despite these advances, there are limited data regarding the use of these assays in solid organ transplant (SOT) recipients and there is little guidance on how to select, implement, and interpret them in clinical practice. We describe a practical approach to the implementation and interpretation of these assays in SOT recipients using the best available data and expert opinion. These findings were part of a consensus conference sponsored by the American Society of Transplantation held on December 7, 2021 and represent the collaboration between experts in transplant infectious diseases, pharmacy, antimicrobial and diagnostic stewardship, and clinical microbiology. Areas of unmet need and recommendations for future investigation are also presented.


Assuntos
Anti-Infecciosos , Doenças Transmissíveis , Transplante de Órgãos , Sepse , Humanos , Antibacterianos/uso terapêutico , Transplante de Órgãos/efeitos adversos , Transplante de Órgãos/métodos , Farmacorresistência Bacteriana , Anti-Infecciosos/uso terapêutico , Transplantados , Sepse/tratamento farmacológico
5.
Clin Microbiol Newsl ; 44(22): 199-208, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36438980

RESUMO

Monkeypox virus (MPXV) has garnered recent attention as outbreaks are continually reported outside historic regions of endemicity in Africa. Consequently, MPXV is becoming routinely included in the differential diagnosis of rash illnesses, requiring clinicians and laboratorians alike to quickly adapt to a new public health emergency. This review discusses the epidemiology, clinical presentation, and laboratory testing of MPXV in the context of recent outbreaks.

6.
Am J Transplant ; 22(12): 3150-3169, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35822346

RESUMO

The last decade has seen an explosion of advanced assays for the diagnosis of infectious diseases, yet evidence-based recommendations to inform their optimal use in the care of transplant recipients are lacking. A consensus conference sponsored by the American Society of Transplantation (AST) was convened on December 7, 2021, to define the utility of novel infectious disease diagnostics in organ transplant recipients. The conference represented a collaborative effort by experts in transplant infectious diseases, diagnostic stewardship, and clinical microbiology from centers across North America to evaluate current uses, unmet needs, and future directions for assays in 5 categories including (1) multiplex molecular assays, (2) rapid antimicrobial resistance detection methods, (3) pathogen-specific T-cell reactivity assays, (4) next-generation sequencing assays, and (5) mass spectrometry-based assays. Participants reviewed and appraised available literature, determined assay advantages and limitations, developed best practice guidance largely based on expert opinion for clinical use, and identified areas of future investigation in the setting of transplantation. In addition, attendees emphasized the need for well-designed studies to generate high-quality evidence needed to guide care, identified regulatory and financial barriers, and discussed the role of regulatory agencies in facilitating research and implementation of these assays. Findings and consensus statements are presented.


Assuntos
Transplante de Órgãos , Transplantes , Humanos , Transplantados , Consenso , Transplante de Órgãos/efeitos adversos , América do Norte
9.
Eur J Clin Microbiol Infect Dis ; 41(3): 395-405, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34816330

RESUMO

Viral respiratory tract infections cause significant morbidity in bone marrow transplant (BMT) patients. Speed and sensitivity of the FilmArray™ Respiratory Panel (FA-RP) can improve care but may prompt inappropriate testing. Studies describing FA-RP use in pediatric BMT patients are limited; we investigated FA-RP use, results, and clinical management to evaluate clinical significance of testing in pediatric BMT patients. Retrospective analysis of 671 respiratory specimens from 204 unique BMT patients between 01/01/2016 and 01/01/2019 was performed. Age, underlying diagnoses, FA-RP result, reason for FA-RP, and symptoms were abstracted. FA-RP impact on antimicrobial management, scheduled procedures, infection control measures, and hospital admission/discharge were investigated. Impacts of repeat testing were evaluated. Two hundred sixty-nine out of 671 specimens (40%) tested positive; human rhinovirus/enterovirus (hRV/hEV) was the most common (161/269, 60%). The primary reason for FA-RP was URI symptoms (402/671, 60%) with 54% testing positive. One hundred twenty-two out of 671 (18.2%) specimens were from asymptomatic patients; 14 (11.4%) tested positive. FA-RP informed antiviral initiation in 7/19 (36.8%), 7/8 (87.5%), and 5/30 (16.7%) of RSV, influenza, and human parainfluenza cases, respectively. In 11 cases, FA-RP informed azithromycin and ceftriaxone initiation, continuation, or discontinuation. BMT was delayed for three positives (two RSV, one hRV/hEV). In 22 instances, negative FA-RP cleared patients for BMT. In 70% of cases, repeats offered no new clinical information; all negative-to-positive cases had new or worsening respiratory symptoms. FA-RP was ordered on symptomatic and asymptomatic patients, provided rapid diagnosis in > 50% of symptomatic patients, and informed infection control measures for all inpatients and antiviral initiation in > 80% of influenza cases.


Assuntos
Infecções Respiratórias , Vírus , Transplante de Medula Óssea/efeitos adversos , Criança , Humanos , Lactente , Sistema Respiratório , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/epidemiologia , Estudos Retrospectivos
11.
J Clin Virol ; 142: 104936, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34352616

RESUMO

BACKGROUND: Hallmarks of cytomegalovirus (CMV) meningoencephalitis include fever, altered mental status, or meningismus with pleocytosis, elevated protein and hypoglycorrhachia on cerebrospinal fluid (CSF) analysis. Magnetic resonance imaging may show ventriculitis, ependymitis or periventricular enhancement. Studies are limited comparing clinical and laboratory characteristics to other viral etiologies. OBJECTIVES: This multi-center, retrospective cohort analysis reviewed patients with CMV meningitis or encephalitis and compared clinical features, laboratory findings and outcomes to the most common viral causes of meningoencephalitis. STUDY DESIGN: Patients with encephalitis or aseptic meningitis and detectable genetic material by polymerase chain reaction were identified. Clinical characteristics, laboratory findings and neuroimaging were collected from the electronic medical record. Data analysis was performed comparing CMV to other viral etiologies. RESULTS: 485 patients were evaluated and included cases of CMV (n = 36) which were compared with herpes simplex virus (n = 114), enterovirus (n = 207), varicella zoster virus (n = 41) and West Nile virus (n = 81). Human immunodeficiency virus (HIV) infection was seen more frequently in CMV infection compared with all other viral etiologies. Clinical presentations and CSF findings of other viral etiologies differ compared with CMV. Hypoglycorrhacia occurred more often with CMV compared with other viral pathogens. Outcomes were significantly worse compared with enterovirus, herpes simplex virus and varicella zoster virus but not West Nile virus. CONCLUSIONS: CMV meningoencephalitis occurs most often in patients with HIV and encephalitis occurs more frequently than meningitis. Clinical and laboratory findings differ compared with other viral etiologies and can support consideration of CMV in the differential diagnosis of patients with meningoencephalitis.


Assuntos
Meningite Asséptica , Meningite Viral , Meningoencefalite , Citomegalovirus , Humanos , Meningoencefalite/diagnóstico , Estudos Retrospectivos
12.
Emerg Microbes Infect ; 10(1): 1293-1299, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34125658

RESUMO

The SARS-CoV-2 B.1.1.7 lineage is highly infectious and as of April 2021 accounted for 92% of COVID-19 cases in Europe and 59% of COVID-19 cases in the U.S. It is defined by the N501Y mutation in the receptor-binding domain (RBD) of the Spike (S) protein, and a few other mutations. These include two mutations in the N terminal domain (NTD) of the S protein, HV69-70del and Y144del (also known as Y145del due to the presence of tyrosine at both positions). We recently identified several emerging SARS-CoV-2 variants of concerns, characterized by Membrane (M) protein mutations, including I82T and V70L. We now identify a sub-lineage of B.1.1.7 that emerged through sequential acquisitions of M:V70L in November 2020 followed by a novel S:D178H mutation first observed in early February 2021. The percentage of B.1.1.7 isolates in the US that belong to this sub-lineage increased from 0.15% in February 2021 to 1.8% in April 2021. To date, this sub-lineage appears to be U.S.-specific with reported cases in 31 states, including Hawaii. As of April 2021, it constituted 36.8% of all B.1.1.7 isolates in Washington. Phylogenetic analysis and transmission inference with Nextstrain suggest this sub-lineage likely originated in either California or Washington. Structural analysis revealed that the S:D178H mutation is in the NTD of the S protein and close to two other signature mutations of B.1.1.7, HV69-70del and Y144del. It is surface exposed and may alter NTD tertiary configuration or accessibility, and thus has the potential to affect neutralization by NTD directed antibodies.


Assuntos
Mutação , SARS-CoV-2/classificação , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/genética , Sequenciamento Completo do Genoma/métodos , Sítios de Ligação , Humanos , Modelos Moleculares , Filogenia , Domínios Proteicos , Estrutura Terciária de Proteína , SARS-CoV-2/genética , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/química , Estados Unidos
13.
BMC Pediatr ; 21(1): 238, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006235

RESUMO

BACKGROUND: Fever is a common symptom in children presenting to the Emergency Department (ED). We aimed to describe the epidemiology of systemic viral infections and their predictive values for excluding serious bacterial infections (SBIs), including bacteremia, meningitis and urinary tract infections (UTIs) in children presenting to the ED with suspected systemic infections. METHODS: We enrolled children who presented to the ED with suspected systemic infections who had blood cultures obtained at seven healthcare facilities. Whole blood specimens were analyzed by an experimental multiplexed PCR test for 7 viruses. Demographic and laboratory results were abstracted. RESULTS: Of the 1114 subjects enrolled, 245 viruses were detected in 224 (20.1%) subjects. Bacteremia, meningitis and UTI frequency in viral bloodstream-positive patients was 1.3, 0 and 10.1% compared to 2.9, 1.3 and 9.7% in viral bloodstream-negative patients respectively. Although viral bloodstream detections had a high negative predictive value for bacteremia or meningitis (NPV = 98.7%), the frequency of UTIs among these subjects remained appreciable (9/89, 10.1%) (NPV = 89.9%). Screening urinalyses were positive for leukocyte esterase in 8/9 (88.9%) of these subjects, improving the ability to distinguish UTI. CONCLUSIONS: Viral bloodstream detections were common in children presenting to the ED with suspected systemic infections. Although overall frequencies of SBIs among subjects with and without viral bloodstream detections did not differ significantly, combining whole blood viral testing with urinalysis provided high NPV for excluding SBI.


Assuntos
Bacteriemia , Infecções Bacterianas , Infecções Urinárias , Bacteriemia/diagnóstico , Bacteriemia/epidemiologia , Criança , Serviço Hospitalar de Emergência , Febre , Humanos , Lactente , Infecções Urinárias/diagnóstico , Infecções Urinárias/epidemiologia
14.
Emerg Microbes Infect ; 10(1): 885-893, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33896413

RESUMO

Mutations in the SARS-CoV-2 Membrane (M) gene are relatively uncommon. The M gene encodes the most abundant viral structural protein, and is implicated in multiple viral functions, including initial attachment to the host cell via heparin sulphate proteoglycan, viral protein assembly in conjunction with the N and E genes, and enhanced glucose transport. We have identified a recent spike in the frequency of reported SARS-CoV-2 genomes carrying M gene mutations. This is associated with emergence of a new sub-B.1 clade, B.1.I82T, defined by the previously unreported M:I82T mutation within TM3, the third of three membrane spanning helices implicated in glucose transport. The frequency of this mutation increased in the USA from 0.014% in October 2020 to 1.62% in February 2021, a 116-fold change. While constituting 0.7% of the isolates overall, M:I82T sub-B.1 lineage accounted for 14.4% of B.1 lineage isolates in February 2021, similar to the rapid initial increase previously seen with the B.1.1.7 and B.1.429 lineages, which quickly became the dominant lineages in Europe and California over a period of several months. A similar increase in incidence was also noted in another related mutation, V70L, also within the TM2 transmembrane helix. These M mutations are associated with younger patient age (4.6 to 6.3 years). The rapid emergence of this B.1.I82T clade, recently named Pangolin B.1.575 lineage, suggests that this M gene mutation is more biologically fit, perhaps related to glucose uptake during viral replication, and should be included in ongoing genomic surveillance efforts and warrants further evaluation for potentially increased pathogenic and therapeutic implications.


Assuntos
COVID-19/virologia , Mutação , SARS-CoV-2/genética , Proteínas da Matriz Viral/genética , Adulto , Linhagem da Célula , Criança , Pré-Escolar , Humanos , Filogenia
15.
medRxiv ; 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33688673

RESUMO

Background: There is increasing concern that persistent infection of SARS-CoV-2 within immunocompromised hosts could serve as a reservoir for mutation accumulation and subsequent emergence of novel strains with the potential to evade immune responses. Methods: We describe three patients with acute lymphoblastic leukemia who were persistently positive for SARS-CoV-2 by real-time polymerase chain reaction. Viral viability from longitudinally-collected specimens was assessed. Whole-genome sequencing and serological studies were performed to measure viral evolution and evidence of immune escape. Findings: We found compelling evidence of ongoing replication and infectivity for up to 162 days from initial positive by subgenomic RNA, single-stranded RNA, and viral culture analysis. Our results reveal a broad spectrum of infectivity, host immune responses, and accumulation of mutations, some with the potential for immune escape. Interpretation: Our results highlight the need to reassess infection control precautions in the management and care of immunocompromised patients. Routine surveillance of mutations and evaluation of their potential impact on viral transmission and immune escape should be considered. Funding: The work was partially funded by The Saban Research Institute at Children's Hospital Los Angeles intramural support for COVID-19 Directed Research (X.G. and J.D.B.), the Johns Hopkins Center of Excellence in Influenza Research and Surveillance HHSN272201400007C (A.P.), NIH/NIAID R01AI127877 (S.D.B.), NIH/NIAID R01AI130398 (S.D.B.), NIH 1U54CA260517 (S.D.B.), an endowment to S.D.B. from the Crown Family Foundation, an Early Postdoc.Mobility Fellowship Stipend to O.F.W. from the Swiss National Science Foundation (SNSF), and a Coulter COVID-19 Rapid Response Award to S.D.B. L.G. is a SHARE Research Fellow in Pediatric Hematology-Oncology.

16.
medRxiv ; 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33619507

RESUMO

Background: In the US, community circulation of the SARS-CoV-2 virus likely began in February 2020 after mostly travel-related cases. Children's Hospital of Philadelphia began testing on 3/9/2020 for pediatric and adult patients, and for all admitted patients on 4/1/2020, allowing an early glimpse into the local molecular epidemiology of the virus. Methods: We obtained 169 SARS-CoV-2 samples (83 from patients <21 years old) from March through May and produced whole genome sequences. We used genotyping tools to track variants over time and to test for possible genotype associated clinical presentations and outcomes in children. Results: Our analysis uncovered 13 major lineages that changed in relative abundance as cases peaked in mid-April in Philadelphia. We detected at least 6 introductions of distinct viral variants into the population. As a group, children had more diverse virus genotypes than the adults tested. No strong differences in clinical variables were associated with genotypes. Conclusions: Whole genome analysis revealed unexpected diversity, and distinct circulating viral variants within the initial peak of cases in Philadelphia. Most introductions appeared to be local from nearby states. Although limited by sample size, we found no evidence that different genotypes had different clinical impacts in children in this study.

17.
Clin Lab Med ; 39(3): 433-451, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31383267

RESUMO

This article describes the current state of the art with regards to commercially available syndromic panels for blood stream infections, gastrointestinal pathogen detection, respiratory tract infections, and central nervous system infections, while providing a provocative and speculative look into the future of syndromic panel testing for infectious diseases.


Assuntos
Doenças Transmissíveis/diagnóstico , Técnicas Microbiológicas/métodos , Manejo de Espécimes , Humanos , Técnicas de Diagnóstico Molecular
18.
EClinicalMedicine ; 8: 72-77, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31008450

RESUMO

BACKGROUND: Pertussis is a highly contagious respiratory disease caused by the bacterium Bordetella pertussis (B. pertussis). The infection is difficult to diagnose especially in underserved or resource-limited areas. We developed a low-cost and instrument-free diagnostic method for rapid and accurate detection of B. pertussis on a point-of-care (POC) testing device. METHODS: We developed a paper/polymer hybrid microfluidic biochip integrated with loop-mediated isothermal amplification (LAMP) method for the rapid and accurate detection of B. pertussis. This microfluidic approach was validated by testing 100 de-identified remnant clinical nasopharyngeal swabs and aspirates, which were confirmed to be either positive or negative for B. pertussis by a validated real-time PCR assay at the Children's Hospital Los Angeles. FINDINGS: The instrument-free detection results could be successfully read by the naked eye within 45 min with a limit of detection (LOD) of 5 DNA copies per well. Our optimized bacterial lysis protocol allowed the direct testing of clinical samples without any complicated sample processing/preparation (i.e. DNA extraction) or the use of any equipment (e.g. centrifuges). The validation of the microfluidic approach was accomplished by testing 100 clinical samples. High sensitivity (100%) and specificity (96%) with respect to real-time PCR were achieved. INTERPRETATION: This microfluidic biochip shows great potential for point-of-care disease diagnosis in various venues including schools and physician's offices, especially in low-resource settings in developing nations. FUNDING: NIH/NIAID under award number R21AI107415, NIH RCMI Pilot Grant, the Philadelphia Foundation, the Medical Center of the Americas Foundation.

19.
Microbiome ; 6(1): 155, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201048

RESUMO

BACKGROUND: Recent advances in sequencing technologies and bioinformatics tools have allowed for large-scale microbiome studies that are rapidly advancing medical research. However, small changes in technique or analysis can significantly alter the results and lead to conflicting findings. Quantifying the technical versus biological variation expected in targeted 16S rRNA gene sequencing studies and how this variation changes with input biomass is critical to guide meaningful interpretation of the current literature and plan future research. RESULTS: Data were compiled from 469 sequencing libraries across 19 separate targeted 16S rRNA gene sequencing runs over a 2.5-year time period. Following removal of contaminant sequences identified from negative controls, 244 samples retained sufficient reads for further analysis. Coefficients of variation for intra- and inter-assay variation from repeated measurements of a bacterial mock community ranged from 8.7 to 37.6% (intra) and 15.6 to 80.5% (inter) for all but one genus of bacteria whose relative abundance was greater than 1%. Intra- versus inter-assay Bray-Curtis pairwise distances for a single stool sample were 0.11 versus 0.31, whereas intra-assay variation from repeat stool samples from the same donor was greater at 0.38 (Wilcoxon p = 0.001). A dilution series of the bacterial mock community was used to assess the effect of input biomass on variability. Pairwise distances increased with more dilute samples, and estimates of relative abundance became unreliable below approximately 100 copies of the 16S rRNA gene per microliter. Using this data, we created a prediction model to estimate the expected variation in microbiome measurements for given input biomass and relative abundance values. CONCLUSIONS: Well-controlled microbiome studies are sufficiently robust to capture small biological effects and can achieve levels of variability consistent with clinical assays. Relative abundance is negatively associated with measures of variability and has a stronger effect on variability than does absolute biomass, suggesting that it is feasible to detect differences in bacterial populations in very low-biomass samples. Further, by quantifying the effect of biomass and relative abundance on compositional variability, we developed a tool for defining the expected variance in a given microbiome study.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biomassa , DNA Bacteriano/genética , Estudos de Avaliação como Assunto , Fezes/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Filogenia
20.
Artigo em Inglês | MEDLINE | ID: mdl-29941639

RESUMO

Daptomycin has become a mainstay therapy for the treatment of serious vancomycin-resistant Enterococcus faecium infections. However, concern exists that current testing methods do not accurately predict the clinical success of daptomycin therapy. We evaluated a collection of 40 isolates of E. faecium across three centers by reference broth microdilution (BMD), and two gradient strips, to determine the precision of daptomycin MICs by these methods and the correlation of daptomycin MIC testing with mutations in the liaFSR system, one of the primary daptomycin resistance mechanisms among the enterococci. Daptomycin MICs spanned 3-log2 dilutions by BMD for 60.0% of isolates, 17.5% spanned 4 dilutions, 2.5% spanned 5 dilutions, and 20.0% spanned 6 or more dilutions. Fifteen isolates had MICs interpreted as susceptible by some tests and nonsusceptible by others. Neither BMD nor gradient diffusion tests could reliably differentiate isolates with or without mutations in liaFSR, resulting in a 59.8% very major error rate compared to determination of genotype by BMD, 63.5% by Etest, and 68.5% by MIC test strip. Imprecision in daptomycin MIC determination for E. faecium make establishment of a revised breakpoint challenging. Clinicians should be aware of this testing variability when making treatment decisions for patients with serious infections caused by this organism.


Assuntos
Antibacterianos/farmacologia , Daptomicina/farmacologia , Farmacorresistência Bacteriana/fisiologia , Enterococcus faecium/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Contagem de Colônia Microbiana , Enterococcus faecium/crescimento & desenvolvimento , Enterococcus faecium/isolamento & purificação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA