Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Life Cycle Assess ; 26: 1832-1846, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764626

RESUMO

PURPOSE: Prior versions of the Tool for Reduction and Assessment of Chemical and other environmental Impacts (TRACI) have recognized the need for spatial variability when characterizing eutrophication. However, the method's underlying environmental models had not been updated to reflect the latest science. This new research provides the ability to differentiate locations with a high level of detail within the USA and provides global values at the country level. METHODS: In previous research (Morelli et al. 2018), the authors reviewed a broad range of domain-specific models and life cycle assessment methods for characterization of eutrophication and ranked these by levels of importance to the field and readiness for further development. The current research is rooted in the decision outcome of Morelli et al. (2018) to separate freshwater and marine eutrophication to allow for the most tailored characterization of each category individually. The current research also assumes that freshwater systems are limited by phosphorus and marine systems are limited by nitrogen. Using a combination of spatial modeling methods for soil, air, and water, we calculate midpoint characterization factors for freshwater and marine eutrophication categories and evaluate the results through a US-based case application. RESULTS AND DISCUSSION: Maps of the nutrient inventories, characterization factors, and overall impacts of the case application illustrate the spatial variation and patterns in the results. The importance of variation in geographic location is demonstrated using nutrient-based activity likelihood categories of agricultural (rural fertilizer), non-agricultural (urban fertilizer), and general (human waste processing). Proximity to large bodies of water, as well as individual hydraulic residence times, was shown to affect the comparative values of characterization factors across the USA. CONCLUSIONS: In this paper, we have calculated and applied finely resolved freshwater and marine eutrophication characterization factors for the USA and country-level factors for the rest of the globe. Additional research is needed to provide similarly resolved characterization factors for the entire globe, which would require expansion of publicly available data and further development of applicable fate and transport models. Further scientific advances may also be considered as computing capabilities become more sophisticated and widely accessible.

2.
Sci Total Environ ; 747: 141278, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32795796

RESUMO

The integration of ecosystem service (ES) assessment with life cycle assessment (LCA) is important for developing decision support tools for environmental sustainability. A prequel study has proposed a 4-step methodology that integrates the ES cascade framework within the cause-effect chain of life cycle impact assessment (LCIA) to characterize the physical and monetary impacts on ES provisioning due to human interventions. We here follow the suggested steps in the abovementioned study, to demonstrate the first application of the integrated ES-LCIA methodology and the added value for LCA studies, using a case study of rice farming in the United States, China, and India. Four ES are considered, namely carbon sequestration, water provisioning, air quality regulation, and water quality regulation. The analysis found a net negative impact for rice farming systems in all three rice producing countries, meaning the detrimental impacts of rice farming on ES being greater than the induced benefits on ES. Compared to the price of rice sold in the market, the negative impacts represent around 2%, 6%, and 4% of the cost of 1 kg of rice from China, India, and the United States, respectively. From this case study, research gaps were identified in order to develop a fully operationalized ES-LCIA integration. With such a framework and guidance in place, practitioners can more comprehensively assess the impacts of life cycle activities on relevant ES provisioning, in both physical and monetary terms. This may in turn affect stakeholders' availability to receive such benefits from ecosystems in the long run.


Assuntos
Ecossistema , Oryza , Agricultura , China , Conservação dos Recursos Naturais , Humanos , Índia
3.
J Ind Ecol ; 24(5): 986-1003, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33746505

RESUMO

Life cycle interpretation is the fourth and last phase of life cycle assessment (LCA). Being a "pivot" phase linking all other phases and the conclusions and recommendations from an LCA study, it represents a challenging task for practitioners, who miss harmonized guidelines that are sufficiently complete, detailed, and practical to conduct its different steps effectively. Here, we aim to bridge this gap. We review available literature describing the life cycle interpretation phase, including standards, LCA books, technical reports, and relevant scientific literature. On this basis, we evaluate and clarify the definition and purposes of the interpretation phase and propose an array of methods supporting its conduct in LCA practice. The five steps of interpretation defined in ISO 14040-44 are proposed to be reorganized around a framework that offers a more pragmatic approach to interpretation. It orders the steps as follows: (i) completeness check, (ii) consistency check, (iii) sensitivity check, (iv) identification of significant issues, and (v) conclusions, limitations, and recommendations. We provide toolboxes, consisting of methods and procedures supporting the analyses, computations, points to evaluate or check, and reflective processes for each of these steps. All methods are succinctly discussed with relevant referencing for further details of their applications. This proposed framework, substantiated with the large variety of methods, is envisioned to help LCA practitioners increase the relevance of their interpretation and the soundness of their conclusions and recommendations. It is a first step toward a more comprehensive and harmonized LCA practice to improve the reliability and credibility of LCA studies.

4.
Sci Total Environ ; 690: 1284-1298, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31470491

RESUMO

The assessment of ecosystem services (ES) is covered in a fragmented manner by environmental decision support tools that provide information about the potential environmental impacts of supply chains and their products, such as the well-known Life Cycle Assessment (LCA) methodology. Within the flagship project of the Life Cycle Initiative (hosted by UN Environment), aiming at global guidance for life cycle impact assessment (LCIA) indicators, a dedicated subtask force was constituted to consolidate the evaluation of ES in LCA. As one of the outcomes of this subtask force, this paper describes the progress towards consensus building in the LCA domain concerning the assessment of anthropogenic impacts on ecosystems and their associated services for human well-being. To this end, the traditional LCIA structure, which represents the cause-effect chain from stressor to impacts and damages, is re-casted and expanded using the lens of the ES 'cascade model'. This links changes in ecosystem structure and function to changes in human well-being, while LCIA links the effect of changes on ecosystems due to human impacts (e.g. land use change, eutrophication, freshwater depletion) to the increase or decrease in the quality and/or quantity of supplied ES. The proposed cascade modelling framework complements traditional LCIA with information about the externalities associated with the supply and demand of ES, for which the overall cost-benefit result might be either negative (i.e. detrimental impact on the ES provision) or positive (i.e. increase of ES provision). In so doing, the framework introduces into traditional LCIA the notion of "benefit" (in the form of ES supply flows and ecosystems' capacity to generate services) which balances the quantified environmental intervention flows and related impacts (in the form of ES demands) that are typically considered in LCA. Recommendations are eventually provided to further address current gaps in the analysis of ES within the LCA methodology.

5.
Int J Life Cycle Assess ; 24(5): 960-974, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31501640

RESUMO

PURPOSE: While many examples have shown unsustainable use of freshwater resources, existing LCIA methods for water use do not comprehensively address impacts to natural resources for future generations. This framework aims to (1) define freshwater resource as an item to protect within the Area of Protection (AoP) natural resources, (2) identify relevant impact pathways affecting freshwater resources, and (3) outline methodological choices for impact characterization model development. METHOD: Considering the current scope of the AoP natural resources, the complex nature of freshwater resources and its important dimensions to safeguard safe future supply, a definition of freshwater resource is proposed, including water quality aspects. In order to clearly define what is to be protected, the freshwater resource is put in perspective through the lens of the three main safeguard subjects defined by Dewulf et al. (2015). In addition, an extensive literature review identifies a wide range of possible impact pathways to freshwater resources, establishing the link between different inventory elementary flows (water consumption, emissions and land use) and their potential to cause long-term freshwater depletion or degradation. RESULTS AND DISCUSSION: Freshwater as a resource has a particular status in LCA resource assessment. First, it exists in the form of three types of resources: flow, fund, or stock. Then, in addition to being a resource for human economic activities (e.g. hydropower), it is above all a non-substitutable support for life that can be affected by both consumption (source function) and pollution (sink function). Therefore, both types of elementary flows (water consumption and emissions) should be linked to a damage indicator for freshwater as a resource. Land use is also identified as a potential stressor to freshwater resources by altering runoff, infiltration and erosion processes as well as evapotranspiration. It is suggested to use the concept of recovery period to operationalize this framework: when the recovery period lasts longer than a given period of time, impacts are considered to be irreversible and fall into the concern of freshwater resources protection (i.e. affecting future generations), while short-term impacts effect the AoP ecosystem quality and human health directly. It is shown that it is relevant to include this concept in the impact assessment stage in order to discriminate the long-term from the short-term impacts, as some dynamic fate models already do. CONCLUSION: This framework provides a solid basis for the consistent development of future LCIA methods for freshwater resources, thereby capturing the potential long-term impacts that could warn decision makers about potential safe water supply issues in the future.

6.
Int J Life Cycle Assess ; 24(6): 1009-1026, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32632341

RESUMO

PURPOSE: There do not currently exist scientifically defensible ways to consistently characterize the human exposures (via various pathways) to near-field chemical emissions and associated health impacts during the use stage of building materials. The present paper thus intends to provide a roadmap which summarizes the current status and guides future development for integrating into LCA the chemical exposures and health impacts on various users of building materials, with a focus on building occupants. METHODS: We first review potential human health impacts associated with the substances in building materials and the methods used to mitigate these impacts, also identifying several of the most important online data resources. A brief overview of the necessary steps for characterizing use stage chemical exposures and health impacts for building materials is then provided. Finally, we propose a systematic approach to integrate the use stage exposures and health impacts into building material LCA and describe its components, and then present a case study illustrating the application of the proposed approach to two representative chemicals: formaldehyde and methylene diphenyl diisocyanate (MDI) in particleboard products. RESULTS AND DISCUSSION: Our proposed approach builds on the coupled near-field and far-field framework proposed by Fantke et al. (Environ Int 94:508-518, 2016), which is based on the product intake fraction (PiF) metric proposed by Jolliet et al. (Environ Sci Technol 49:8924-8931, 2015), The proposed approach consists of three major components: characterization of product usage and chemical content, human exposures, and toxicity, for which available methods and data sources are reviewed and research gaps are identified. The case study illustrates the difference in dominant exposure pathways between formaldehyde and MDI and also highlights the impact of timing and use duration (e.g., the initial 50 days of the use stage vs. the remaining 15 years) on the exposures and health impacts for the building occupants. CONCLUSIONS: The proposed approach thus provides the methodological basis for integrating into LCA the human health impacts associated with chemical exposures during the use stage of building materials. Data and modeling gaps which currently prohibit the application of the proposed systematic approach are discussed, including the need for chemical composition data, exposure models, and toxicity data. Research areas that are not currently focused on are also discussed, such as worker exposures and complex materials. Finally, future directions for integrating the use stage impacts of building materials into decision making in a tiered approach are discussed.

7.
Int J Life Cycle Assess ; 24(5): 856-865, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122880

RESUMO

PURPOSE: Regionalized life cycle impact assessment (LCIA) has rapidly developed in the past decade, though its widespread application, robustness, and validity still faces multiple challenges. Under the umbrella of UNEP/SETAC Life Cycle Initiative, a dedicated cross-cutting working group on regionalized LCIA aims to provides an overview of the status of regionalization in LCIA methods. We give guidance and recommendations to harmonize and support regionalization in LCIA for developers of LCIA methods, LCI databases, and LCA software. METHOD: A survey of current practice among regionalized LCIA method developers was conducted. The survey included questions on chosen method spatial resolution and scale, the spatial resolution of input parameters, choice of native spatial resolution and limitations, operationalization and alignment with life cycle inventory data, methods for spatial aggregation, the assessment of uncertainty from input parameters and model structure, and variability due to spatial aggregation. Recommendations are formulated based on the survey results and extensive discussion by the authors. RESULTS AND DISCUSSION: Survey results indicate that majority of regionalized LCIA models have global coverage. Native spatial resolutions are generally chosen based on the availability of global input data. Annual modelled or measured elementary flow quantities are mostly used for aggregating characterization factors (CFs) to larger spatial scales, although some use proxies, such as population counts. Aggregated CFs are mostly available at the country level. Although uncertainty due to input parameter, model structure, and spatial aggregation are available for some LCIA methods, they are rarely implemented for LCA studies. So far, there is no agreement if a finer native spatial resolution is the best way to reduce overall uncertainty. When spatially differentiated models CFs are not easily available, archetype models are sometimes developed. CONCLUSIONS: Regionalized LCIA methods should be provided as a transparent and consistent set of data and metadata using standardized data formats. Regionalized CFs should include both uncertainty and variability. In addition to the native-scale CFs, aggregated CFs should always be provided, and should be calculated as the weighted averages of constituent CFs using annual flow quantities as weights whenever available. This paper is an important step forward for increasing transparency, consistency and robustness in the development and application of regionalized LCIA methods.

8.
Environ Health Perspect ; 126(12): 125001, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30540492

RESUMO

BACKGROUND: The Life Cycle Initiative, hosted at the United Nations Environment Programme, selected human toxicity impacts from exposure to chemical substances as an impact category that requires global guidance to overcome current assessment challenges. The initiative leadership established the Human Toxicity Task Force to develop guidance on assessing human exposure and toxicity impacts. Based on input gathered at three workshops addressing the main current scientific challenges and questions, the task force built a roadmap for advancing human toxicity characterization, primarily for use in life cycle impact assessment (LCIA). OBJECTIVES: The present paper aims at reporting on the outcomes of the task force workshops along with interpretation of how these outcomes will impact the practice and reliability of toxicity characterization. The task force thereby focuses on two major issues that emerged from the workshops, namely considering near-field exposures and improving dose­response modeling. DISCUSSION: The task force recommended approaches to improve the assessment of human exposure, including capturing missing exposure settings and human receptor pathways by coupling additional fate and exposure processes in consumer and occupational environments (near field) with existing processes in outdoor environments (far field). To quantify overall aggregate exposure, the task force suggested that environments be coupled using a consistent set of quantified chemical mass fractions transferred among environmental compartments. With respect to dose­response, the task force was concerned about the way LCIA currently characterizes human toxicity effects, and discussed several potential solutions. A specific concern is the use of a (linear) dose­response extrapolation to zero. Another concern addresses the challenge of identifying a metric for human toxicity impacts that is aligned with the spatiotemporal resolution of present LCIA methodology, yet is adequate to indicate health impact potential. CONCLUSIONS: Further research efforts are required based on our proposed set of recommendations for improving the characterization of human exposure and toxicity impacts in LCIA and other comparative assessment frameworks. https://doi.org/10.1289/EHP3871.


Assuntos
Exposição Ambiental , Medição de Risco/métodos , Qualidade de Produtos para o Consumidor , Ecotoxicologia , Humanos , Modelos Teóricos , Exposição Ocupacional
9.
Environ Toxicol Chem ; 37(12): 2955-2971, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30178491

RESUMO

Ecosystem quality is an important area of protection in life cycle impact assessment (LCIA). Chemical pollution has adverse impacts on ecosystems on a global scale. To improve methods for assessing ecosystem impacts, the Life Cycle Initiative hosted by the United Nations Environment Programme established a task force to evaluate the state-of-the-science in modeling chemical exposure of organisms and the resulting ecotoxicological effects for use in LCIA. The outcome of the task force work will be global guidance and harmonization by recommending changes to the existing practice of exposure and effect modeling in ecotoxicity characterization. These changes will reflect the current science and ensure the stability of recommended practice. Recommendations must work within the needs of LCIA in terms of 1) operating on information from any inventory reporting chemical emissions with limited spatiotemporal information, 2) applying best estimates rather than conservative assumptions to ensure unbiased comparison with results for other impact categories, and 3) yielding results that are additive across substances and life cycle stages and that will allow a quantitative expression of damage to the exposed ecosystem. We describe the current framework and discuss research questions identified in a roadmap. Primary research questions relate to the approach toward ecotoxicological effect assessment, the need to clarify the method's scope and interpretation of its results, the need to consider additional environmental compartments and impact pathways, and the relevance of effect metrics other than the currently applied geometric mean of toxicity effect data across species. Because they often dominate ecotoxicity results in LCIA, we give metals a special focus, including consideration of their possible essentiality and changes in environmental bioavailability. We conclude with a summary of key questions along with preliminary recommendations to address them as well as open questions that require additional research efforts. Environ Toxicol Chem 2018;37:2955-2971. © 2018 SETAC.


Assuntos
Ecossistema , Ecotoxicologia , Poluição Ambiental/análise , Metais/análise , Modelos Teóricos , Medição de Risco
10.
Environ Sci Technol ; 52(17): 9562-9578, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30036050

RESUMO

This paper evaluates the current state of life cycle impact assessment (LCIA) methods used to estimate potential eutrophication impacts in freshwater and marine ecosystems and presents a critical review of the underlying surface water quality, watershed, marine, and air fate and transport (F&T) models. Using a criteria rubric, we assess the potential of each method and model to contribute to further refinements of life cycle assessment (LCA) eutrophication mechanisms and nutrient transformation processes as well as model structure, availability, geographic scope, and spatial and temporal resolution. We describe recent advances in LCIA modeling and provide guidance on the best available sources of fate and exposure factors, with a focus on midpoint indicators. The critical review identifies gaps in LCIA characterization modeling regarding the availability and spatial resolution of fate factors in the soil compartment and identifies strategies to characterize emissions from soil. Additional opportunities are identified to leverage detailed F&T models that strengthen existing approaches to LCIA or that have the potential to link LCIA modeling more closely with the spatial and temporal realities of the effects of eutrophication.


Assuntos
Ecossistema , Modelos Teóricos , Eutrofização , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA