Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Peptides ; 48: 96-105, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23891650

RESUMO

Broad-spectrum antiviral drugs are urgently needed to treat individuals infected with new and re-emerging viruses, or with viruses that have developed resistance to antiviral therapies. Mammalian natural host defense peptides (mNHP) are short, usually cationic, peptides that have direct antimicrobial activity, and which in some instances activate cell-mediated antiviral immune responses. Although mNHP have potent activity in vitro, efficacy trials in vivo of exogenously provided mNHP have been largely disappointing, and no mNHP are currently licensed for human use. Mastoparan is an invertebrate host defense peptide that penetrates lipid bilayers, and we reasoned that a mastoparan analog might interact with the lipid component of virus membranes and thereby reduce infectivity of enveloped viruses. Our objective was to determine whether mastoparan-derived peptide MP7-NH2 could inactivate viruses of multiple types, and whether it could stimulate cell-mediated antiviral activity. We found that MP7-NH2 potently inactivated a range of enveloped viruses. Consistent with our proposed mechanism of action, MP7-NH2 was not efficacious against a non-enveloped virus. Pre-treatment of cells with MP7-NH2 did not reduce the amount of virus recovered after infection, which suggested that the primary mechanism of action in vitro was direct inactivation of virus by MP7-NH2. These results demonstrate for the first time that a mastoparan derivative has broad-spectrum antiviral activity in vitro and suggest that further investigation of the antiviral properties of mastoparan peptides in vivo is warranted.


Assuntos
Peptídeos/farmacologia , Vírus/efeitos dos fármacos , Venenos de Vespas/química , Animais , Antivirais/química , Antivirais/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Invertebrados/química , Camundongos , Microscopia Eletrônica , Peptídeos/química , Vírus/ultraestrutura
2.
PLoS One ; 7(10): e46516, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056330

RESUMO

Vaccines based on live viruses are attractive because they are immunogenic, cost-effective, and can be delivered by multiple routes. However, live virus vaccines also cause reactogenic side effects such as fever, myalgia, and injection site pain that have reduced their acceptance in the clinic. Several recent studies have linked vaccine-induced reactogenic side effects to production of the pro-inflammatory cytokine interleukin-1ß (IL-1ß) in humans. Our objective was therefore to determine whether IL-1ß contributed to pathology after immunization with recombinant vesicular stomatitis virus (rVSV) vaccine vectors, and if so, to identify strategies by which IL-1ß mediated pathology might be reduced without compromising immunogenicity. We found that an rVSV vaccine induced local and systemic production of IL-1ß in vivo, and that accumulation of IL-1ß correlated with acute pathology after rVSV immunization. rVSV-induced pathology was reduced in mice deficient in the IL-1 receptor Type I, but the IL-1R-/- mice were fully protected from lethal rechallenge with a high dose of VSV. This result demonstrated that IL-1 contributed to reactogenicity of the rVSV, but was dispensable for induction of protective immunity. The amount of IL-1ß detected in mice deficient in either caspase-1 or the inflammasome adaptor molecule ASC after rVSV immunization was not significantly different than that produced by wild type animals, and caspase-1-/- and ASC-/- mice were only partially protected from rVSV-induced pathology. Those data support the idea that some of the IL-1ß expressed in vivo in response to VSV may be activated by a caspase-1 and ASC-independent mechanism. Together these results suggest that rVSV vectors engineered to suppress the induction of IL-1ß, or signaling through the IL-1R would be less reactogenic in vivo, but would retain their immunogenicity and protective capacity. Such rVSV would be highly desirable as either vaccine vectors or oncolytic therapies, and would likely be better tolerated in human vaccinees.


Assuntos
Interleucina-1beta/biossíntese , Vacinas Sintéticas/imunologia , Vesiculovirus/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/biossíntese , Imunidade Celular , Injeções Intramusculares , Camundongos , Camundongos Knockout , Receptores de Interleucina-1/genética , Vesiculovirus/fisiologia , Replicação Viral
3.
Blood ; 119(26): 6344-53, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22596261

RESUMO

A major challenge in allogeneic hematopoietic cell transplantation is how to transfer T-cell immunity without causing graft-versus-host disease (GVHD). Effector memory T cells (CD62L(-)) are a cell subset that can potentially address this challenge because they do not induce GVHD. Here, we investigated how CD62L(-) T cells contributed to phenotypic and functional T-cell reconstitution after transplantation. On transfer into allogeneic recipients, CD62L(-) T cells were activated and expressed multiple cytokines and cytotoxic molecules. CD62L(-) T cells were able to deplete host radioresistant T cells and facilitate hematopoietic engraftment, resulting in enhanced de novo T-cell regeneration. Enhanced functional immune reconstitution was demonstrated in CD62L(-) T-cell recipients using a tumor and an influenza virus challenge model. Even though CD62L(-) T cells are able to respond to alloantigens and deplete host radioresistant immune cells in GVHD recipients, alloreactive CD62L(-) T cells lost the reactivity over time and were eventually tolerant to alloantigens as a result of prolonged antigen exposure, suggesting a mechanism by which CD62L(-) T cells were able to eliminate host resistance without causing GVHD. These data further highlight the unique characteristics of CD62L(-) T cells and their potential applications in clinical hematopoietic cell transplantation.


Assuntos
Proliferação de Células , Transplante de Células-Tronco Hematopoéticas , Memória Imunológica/imunologia , Selectina L/metabolismo , Linfócitos T/fisiologia , Tolerância ao Transplante/imunologia , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Feminino , Imunidade Inata/imunologia , Hospedeiro Imunocomprometido/imunologia , Hospedeiro Imunocomprometido/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos SCID , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transplante Homólogo
4.
PLoS One ; 6(10): e25797, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22039424

RESUMO

BACKGROUND: During the recent H1N1 influenza pandemic, excess morbidity and mortality was seen in young but not older adults suggesting that prior infection with influenza strains may have protected older subjects. In contrast, a history of recent seasonal trivalent vaccine in younger adults was not associated with protection. METHODS AND FINDINGS: To study hemagglutinin (HA) antibody responses in influenza immunization and infection, we have studied the day 7 plasma cell repertoires of subjects immunized with seasonal trivalent inactivated influenza vaccine (TIV) and compared them to the plasma cell repertoires of subjects experimentally infected (EI) with influenza H3N2 A/Wisconsin/67/2005. The majority of circulating plasma cells after TIV produced influenza-specific antibodies, while most plasma cells after EI produced antibodies that did not react with influenza HA. While anti-HA antibodies from TIV subjects were primarily reactive with single or few HA strains, anti-HA antibodies from EI subjects were isolated that reacted with multiple HA strains. Plasma cell-derived anti-HA antibodies from TIV subjects showed more evidence of clonal expansion compared with antibodies from EI subjects. From an H3N2-infected subject, we isolated a 4-member clonal lineage of broadly cross-reactive antibodies that bound to multiple HA subtypes and neutralized both H1N1 and H3N2 viruses. This broad reactivity was not detected in post-infection plasma suggesting this broadly reactive clonal lineage was not immunodominant in this subject. CONCLUSION: The presence of broadly reactive subdominant antibody responses in some EI subjects suggests that improved vaccine designs that make broadly reactive antibody responses immunodominant could protect against novel influenza strains.


Assuntos
Anticorpos Antivirais/biossíntese , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Influenza Humana/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ressonância de Plasmônio de Superfície
5.
Virology ; 417(1): 87-97, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21658738

RESUMO

Cowpox virus infection induces interleukin-10 (IL-10) production from mouse bone marrow-derived dendritic cells (BMDCs) or cells of the mouse macrophage line (RAW264.7) at about 1800 pg/ml, whereas infections with vaccinia virus (strains WR or MVA) induced much less IL-10. Similarly, in vivo, IL-10 levels in bronchoalveolar lavage fluids of mice infected with cowpox virus were significantly higher than those after vaccinia virus infection. However, after intranasal cowpox virus infection, although dendritic and T-cell accumulations in the lungs of IL-10 deficient mice were greater than those in wild-type mice, weight-loss and viral burdens were not significantly different. IL-10 deficient mice were more susceptible than wild-type mice to re-infection with cowpox virus even though titers of neutralizing antibodies and virus-specific CD8 T cells were similar between IL-10 deficient and wild-type mice. Greater bronchopneumonia in IL-10 deficient mice than wild-type mice suggests that IL-10 contributes to the suppression of immunopathology in the lungs.


Assuntos
Vírus da Varíola Bovina/fisiologia , Varíola Bovina/imunologia , Células Dendríticas/metabolismo , Interleucina-10/metabolismo , Macrófagos/metabolismo , Animais , Células da Medula Óssea/metabolismo , Linhagem Celular , Feminino , Regulação da Expressão Gênica/fisiologia , Interleucina-10/genética , Pulmão/citologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Linfócitos T , Redução de Peso
6.
Vaccine ; 28(1): 79-89, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19819211

RESUMO

Vaccines currently licensed for the prevention of seasonal influenza induce antibodies against the influenza hemagglutinin (HA) and neuraminidase (NA) contained in the vaccine preparation but require at least 2 weeks after immunization for the development of protective immunity. These vaccines do not induce protective responses quickly enough to blunt the effects of infection when administered after exposure. We have developed a novel vaccine based on recombinant vesicular stomatitis virus which expresses the influenza hemagglutinin (rVSV HA) and protects mice from lethal influenza challenge when the vaccine is administered intramuscularly at least 24h after delivery of the influenza challenge virus. To our knowledge this is the first vaccine that effectively protects animals from lethal influenza challenge when delivered by a systemic route after influenza exposure has occurred. The induction of HA-specific immune responses by the vaccine is necessary for full protection from challenge, because animals immunized with an empty rVSV vector were not protected equally. Our results are consistent with a model in which vaccination induces an immediate antiviral cytokine response, followed by development of humoral and cellular immune responses which act to reduce pulmonary viral loads and accelerate recovery. Consistent with this model, mice vaccinated with the specific vaccine rVSV HA had high levels of IFN-alpha in the serum by 24h after challenge/vaccination, developed serum neutralizing Ab to influenza 2 days prior to control animals, and had detectable anti-HA CD8 T cells present in the peripheral blood 3 days prior to control mice.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Antivirais/sangue , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Cricetinae , Feminino , Vírus da Influenza A/imunologia , Injeções Intramusculares , Interferon-alfa/sangue , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Infecções por Orthomyxoviridae/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Carga Viral , Ensaio de Placa Viral
7.
Clin Vaccine Immunol ; 16(4): 488-98, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19244472

RESUMO

Live attenuated vaccine vectors based on recombinant vesicular stomatitis viruses (rVSVs) expressing foreign antigens are highly effective vaccines in animal models. In this study, we report that an rVSV expressing influenza nucleoprotein (VSV NP) from the first position of the VSV genome induces robust anti-NP CD8 T cells in immunized mice. These CD8 T cells are phenotypically similar to those induced by natural influenza infection and are cytotoxic in vivo. Animals immunized with an rVSV expressing the influenza hemagglutinin (rVSV HA) were protected but still exhibited considerable morbidity after challenge. Animals receiving a cocktail vaccine of rVSV NP and rVSV HA had reduced pulmonary viral loads, less weight loss, and reduced clinical signs of illness after influenza virus challenge, relative to those vaccinated with rVSV HA alone. Influenza NP is a highly conserved antigen, and induction of protective anti-NP responses may be a productive strategy for generating heterologous protection against divergent influenza strains.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas de Ligação a RNA/imunologia , Vesiculovirus/genética , Proteínas do Core Viral/imunologia , Animais , Peso Corporal , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/genética , Pulmão/virologia , Camundongos , Proteínas do Nucleocapsídeo , Infecções por Orthomyxoviridae/patologia , Proteínas de Ligação a RNA/genética , Análise de Sobrevida , Proteínas do Core Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA