Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0295651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38271331

RESUMO

BACKGROUND: We have developed a new clinical research approach for the quantification of cellular proliferation in human infants to address unanswered questions about tissue renewal and regeneration. The approach consists of oral 15N-thymidine administration to label cells in S-phase, followed by Multi-isotope Imaging Mass Spectrometry for detection of the incorporated label in cell nuclei. To establish the approach, we performed an observational study to examine uptake and elimination of 15N-thymidine. We compared at-home label administration with in-hospital administration in infants with tetralogy of Fallot, a form of congenital heart disease, and infants with heart failure. METHODS: We examined urine samples from 18 infants who received 15N-thymidine (50 mg/kg body weight) by mouth for five consecutive days. We used Isotope Ratio Mass Spectrometry to determine enrichment of 15N relative to 14N (%) in urine. RESULTS/FINDINGS: 15N-thymidine dose administration produced periodic rises of 15N enrichment in urine. Infants with tetralogy of Fallot had a 3.2-fold increase and infants with heart failure had a 4.3-fold increase in mean peak 15N enrichment over baseline. The mean 15N enrichment was not statistically different between the two patient populations (p = 0.103). The time to peak 15N enrichment in tetralogy of Fallot infants was 6.3 ± 1 hr and in infants with heart failure 7.5 ± 2 hr (mean ± SEM). The duration of significant 15N enrichment after a dose was 18.5 ± 1.7 hr in tetralogy of Fallot and in heart failure 18.2 ± 1.8 hr (mean ± SEM). The time to peak enrichment and duration of enrichment were also not statistically different (p = 0.617 and p = 0.887). CONCLUSIONS: The presented results support two conclusions of significance for future applications: (1) Demonstration that 15N-thymidine label administration at home is equivalent to in-hospital administration. (2) Two different types of heart disease show no differences in 15N-thymidine absorption and elimination. This enables the comparative analysis of cellular proliferation between different types of heart disease.


Assuntos
Insuficiência Cardíaca , Tetralogia de Fallot , Humanos , Tetralogia de Fallot/tratamento farmacológico , Isótopos de Nitrogênio , Administração Oral , Boca , Insuficiência Cardíaca/tratamento farmacológico
2.
Dev Cell ; 57(20): 2397-2411.e9, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36283391

RESUMO

Nuclear pores are essential for nuclear-cytoplasmic transport. Whether and how cells change nuclear pores to alter nuclear transport and cellular function is unknown. Here, we show that rat heart muscle cells (cardiomyocytes) undergo a 63% decrease in nuclear pore numbers during maturation, and this changes their responses to extracellular signals. The maturation-associated decline in nuclear pore numbers is associated with lower nuclear import of signaling proteins such as mitogen-activated protein kinase (MAPK). Experimental reduction of nuclear pore numbers decreased nuclear import of signaling proteins, resulting in decreased expression of immediate-early genes. In a mouse model of high blood pressure, reduction of nuclear pore numbers improved adverse heart remodeling and reduced progression to lethal heart failure. The decrease in nuclear pore numbers in cardiomyocyte maturation and resulting functional changes demonstrate how terminally differentiated cells permanently alter their handling of information flux across the nuclear envelope and, with that, their behavior.


Assuntos
Membrana Nuclear , Poro Nuclear , Camundongos , Ratos , Animais , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA