Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 88(2): 651-662, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35426463

RESUMO

PURPOSE: To develop, optimize, and implement a single shot spiral turbo spin echo (TSE) sequence at 3T and to demonstrate its feasibility to acquire artifact free images of the central nervous system with 1 mm spatial resolution in <200 ms. THEORY AND METHODS: Spiral TSE sequences with annulated spiral segmentation have been implemented with different acquisition modes. In fixed mode, the duration of each spiral segment is fixed to fill the available acquisition time tacq . In tangential mode, the beginning of each spiral segment is reached via a straight tangential trajectory. Tangential mode allows faster transition and thus longer tacq for a given echo spacing (ESP), but less data points can be acquired per acquisition interval. Alternating between spiral-in and spiral-out readout in alternating echoes leads to a somewhat different point spread function for off-resonant spins. RESULTS: Images of the brain with 1 mm spatial resolution acquired with a variable density spiral with ∼40% undersampling can be acquired in a single shot. All acquisition modes produce comparable image quality. Only mild artifacts in regions of strong susceptibility effects can be observed for ESP of 10 ms and below. The use of variable flip angle schemes allows seamless acquisition of consecutive slices and/or dynamic scans without waiting time between consecutive acquisitions. Comparison with images acquired at 1.5T shows reduced susceptibility artifacts within the brain and facial structures. CONCLUSION: Single shot spiral TSE has been demonstrated to enable highly efficient acquisition of high-resolution images of the brain in <200 ms per slice.


Assuntos
Artefatos , Aumento da Imagem , Encéfalo/diagnóstico por imagem , Cabeça , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos
2.
Magn Reson Med ; 86(1): 245-257, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33624352

RESUMO

PURPOSE: Spin-echo (SE) functional MRI (fMRI) can be highly advantageous compared to gradient-echo (GE) fMRI with respect to magnetic field-inhomogeneity artifacts. However, at 3T, the majority of blood oxygenation level-dependent (BOLD) fMRI experiments are performed using T2∗ -weighted GE sequences because of their superior sensitivity compared to SE-fMRI. The presented SE implementation of a highly accelerated GE pulse sequence therefore aims to improve the sensitivity of SE-fMRI while profiting from a reduction of susceptibility-induced signal dropout. METHODS: Spin-echo MR encephalography (SE-MREG) is compared with the more conventionally used spin-echo echo-planar imaging (SE-EPI) and spin-echo simultaneous multislice (SE-SMS) at 3T in terms of capability to detect neuronal activations and resting-state functional connectivity. For activation analysis, healthy subjects underwent consecutive SE-MREG (pulse repetition time [TR] = 0.25 seconds), SE-SMS (TR = 1.3 seconds), and SE-EPI (TR = 4.4 seconds) scans in pseudorandomized order applied to a visual block design paradigm for generation of t-statistics maps. For the investigation of functional connectivity, additional resting-state data were acquired for 5 minutes and a seed-based correlation analysis using Stanford's FIND (Functional Imaging in Neuropsychiatric Disorders) atlas was performed. RESULTS: The increased sampling rate of SE-MREG relative to SE-SMS and SE-EPI improves the sensitivity to detect BOLD activation by 33% and 54%, respectively, and increases the capability to extract resting-state networks. Compared with a brain region that is not affected by magnetic field inhomogeneities, SE-MREG shows 2.5 times higher relative signal strength than GE-MREG in mesial temporal structures. CONCLUSION: SE-MREG offers a viable possibility for whole-brain fMRI with consideration of brain regions that are affected by strong susceptibility-induced magnetic field gradients.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Artefatos , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Humanos , Processamento de Imagem Assistida por Computador , Sensibilidade e Especificidade
3.
MAGMA ; 34(1): 85-108, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33079327

RESUMO

OBJECTIVE: This review article gives an account of the development of the MR-encephalography (MREG) method, which started as a mere 'Gedankenexperiment' in 2005 and gradually developed into a method for ultrafast measurement of physiological activities in the brain. After going through different approaches covering k-space with radial, rosette, and concentric shell trajectories we have settled on a stack-of-spiral trajectory, which allows full brain coverage with (nominal) 3 mm isotropic resolution in 100 ms. The very high acceleration factor is facilitated by the near-isotropic k-space coverage, which allows high acceleration in all three spatial dimensions. METHODS: The methodological section covers the basic sequence design as well as recent advances in image reconstruction including the targeted reconstruction, which allows real-time feedback applications, and-most recently-the time-domain principal component reconstruction (tPCR), which applies a principal component analysis of the acquired time domain data as a sparsifying transformation to improve reconstruction speed as well as quality. APPLICATIONS: Although the BOLD-response is rather slow, the high speed acquisition of MREG allows separation of BOLD-effects from cardiac and breathing related pulsatility. The increased sensitivity enables direct detection of the dynamic variability of resting state networks as well as localization of single interictal events in epilepsy patients. A separate and highly intriguing application is aimed at the investigation of the glymphatic system by assessment of the spatiotemporal patterns of cardiac and breathing related pulsatility. DISCUSSION: MREG has been developed to push the speed limits of fMRI. Compared to multiband-EPI this allows considerably faster acquisition at the cost of reduced image quality and spatial resolution.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Epilepsia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA