Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 111(6): 790-800, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36606344

RESUMO

There is an urgent unmet medical need to develop therapeutic options for the ~50% of depression patients suffering from treatment-resistant depression, which is difficult to treat with existing psycho- and pharmaco-therapeutic options. Classical psychedelics, such as the 5HT2A agonists, have re-emerged as a treatment paradigm for depression. Recent clinical trials highlight the potential effectiveness of 5HT2A agonists to improve mood and psychotherapeutic growth in treatment-resistant depression patients, even in those who have failed a median of four previous medications in their lifetime. Moreover, microdosing could be a promising way to achieve long-term alleviation of depression symptoms without a hallucinogenic experience. However, there are a gamut of practical barriers that stymie further investigation of microdosing 5HT2A agonists, including: low compliance with the complicated dosing regimen, high risk of diversion of controlled substances, and difficulty and cost administering the long-term treatment regimens in controlled settings. Here, we developed a drug delivery system composed of multilayered cellulose acetate phthalate (CAP)/Pluronic F-127 (P) films for the encapsulation and interval delivery of 5HT2A agonists from a fully biodegradable and biocompatible implant. CAPP film composition, thickness, and layering strategies were optimized, and we demonstrated three distinct pulses from the multilayered CAPP films in vitro. Additionally, the pharmacokinetics and biodistribution of the 5HT2A agonist 2,5-Dimethoxy-4-iodoamphetamine (DOI) were quantified following the subcutaneous implantation of DOI-loaded single and multilayered CAPP films. Our results demonstrate, for the first time, the interval delivery of psychedelics from an implantable drug delivery system and open the door to future studies into the therapeutic potential of psychedelic delivery.


Assuntos
Alucinógenos , Humanos , Polímeros , Distribuição Tecidual , Preparações Farmacêuticas
2.
Sensors (Basel) ; 21(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34833721

RESUMO

Exosomes are extracellular vehicles (EVs) that encapsulate genomic and proteomic material from the cell of origin that can be used as biomarkers for non-invasive disease diagnostics in point of care settings. The efficient and accurate detection, quantification, and molecular profiling of exosomes are crucial for the accurate identification of disease biomarkers. Conventional isolation methods, while well-established, provide the co-purification of proteins and other types of EVs. Exosome purification, characterization, and OMICS analysis are performed separately, which increases the complexity, duration, and cost of the process. Due to these constraints, the point-of-care and personalized analysis of exosomes are limited in clinical settings. Lab-on-a-chip biosensing has enabled the integration of isolation and characterization processes in a single platform. The presented review discusses recent advancements in biosensing technology for the separation and detection of exosomes. Fluorescent, colorimetric, electrochemical, magnetic, and surface plasmon resonance technologies have been developed for the quantification of exosomes in biological fluids. Size-exclusion filtration, immunoaffinity, electroactive, and acoustic-fluid-based technologies were successfully applied for the on-chip isolation of exosomes. The advancement of biosensing technology for the detection of exosomes provides better sensitivity and a reduced signal-to-noise ratio. The key challenge for the integration of clinical settings remains the lack of capabilities for on-chip genomic and proteomic analysis.


Assuntos
Técnicas Biossensoriais , Exossomos , Vesículas Extracelulares , Proteômica , Tecnologia
3.
Biosens Bioelectron ; 126: 82-87, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30396021

RESUMO

We report a lab-on-a-chip immunosesnor for quantification of the inflammatory cytokine TNF-α with picomolar sensitivity. The feasibility of the technology was demonstrated via accurate measurement of the concentration of TNF-α in astrocytes cell culture media. The immunoassay was performed in a microfluidic device with an integrated antimony/bismuth thermopile sensor and had a limit of detection of 14 pg mL-1. The device was fabricated using rapid prototyping xurography technique and consisted of two inlets and single outlet. Anti-TNF-α monoclonal antibody was used to capture the analyte while the detection was performed using glucose oxidase-conjugated secondary antibody. Glucose (55 mM) was injected through a sample loop into the fluid flowing within the microfluidic device. A nanovolt meter connected to the thermoelectric sensor recorded the voltage change caused by the enzymatic reaction. Computer simulations using COMSOL Multiphysics were performed to analyze the effect of fluid velocity on the concentration of glucose within the reaction zone. A standard calibration curve was created using serial dilutions of synthetic TNF-α (0-2000 pg mL-1) by plotting the area under the curve of the signal versus the concentration of the analyte. The efficacy of the device was evaluated by quantifying TNF-α in the cell culture medium of lipopolysaccharide stimulated and non-stimulated astrocytes. The results demonstrated high accuracy of the calorimetric immunoassay when compared with gold standard commercial ELISA microplate reader. The immunosensor offers excellent reproducibility, accuracy, and versatility in the choice of the detection enzyme.


Assuntos
Técnicas Biossensoriais/instrumentação , Calorimetria/instrumentação , Dispositivos Lab-On-A-Chip , Fator de Necrose Tumoral alfa/análise , Anticorpos Imobilizados/química , Astrócitos/química , Astrócitos/citologia , Técnicas de Cultura de Células , Linhagem Celular , Meios de Cultura/análise , Desenho de Equipamento , Humanos , Técnicas Imunoenzimáticas/instrumentação , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA