Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Biosyst ; 7: 100056, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36824489

RESUMO

Oxygen tension varies during placental and fetal development. Although hypoxia drives early trophoblast invasion, low placental oxygen levels during pregnancy show association with pregnancy complications including fetal growth restriction and preeclampsia. JEG-3 cells are often used as a trophoblast model. We studied transcriptional changes of JEG-3 cells on a uterine leiomyoma derived matrix Myogel. This might be the closest condition to the real uterine environment that we can get for an in vitro model. We observed that culturing JEG-3 cells on the leiomyoma matrix leads to strong stimulation of ribosomal pathways, energy metabolism, and ATP production. Furthermore, Myogel improved JEG-3 cell adherence in comparison to tissue culture treated plastic. We also included PDMS microchip hypoxia creation, and observed changes in oxidative phosphorylation, oxygen related genes and several hypoxia genes. Our study highlights the effects of Myogel matrix on growing JEG-3 cells, especially on mitochondria, energy metabolism, and protein synthesis.

2.
Micromachines (Basel) ; 11(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143339

RESUMO

A hypoxic (low oxygen level) microenvironment and nitric oxide paracrine signaling play important roles in the control of both biological and pathological cell responses. In this study, we present a microfluidic chip architecture for nitric oxide delivery under a hypoxic microenvironment in human embryonic kidney cells (HEK-293). The chip utilizes two separate, but interdigitated microfluidic channels. The hypoxic microenvironment was created by sodium sulfite as the oxygen scavenger in one of the channels. The nitric oxide microenvironment was created by sodium nitroprusside as the light-activated nitric oxide donor in the other channel. The solutions are separated from the cell culture by a 30 µm thick gas-permeable, but liquid-impermeable polydimethylsiloxane membrane. We show that the architecture is preliminarily feasible to define the gaseous microenvironment of a cell culture in the 100 µm and 1 mm length scales.

3.
Acta Biomater ; 73: 167-179, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29649636

RESUMO

Physiological oxygen levels within the tissue microenvironment are usually lower than 14%, in stem cell niches these levels can be as low as 0-1%. In cell cultures, such low oxygen levels are usually mimicked by altering the global culture environment either by O2 removal (vacuum or oxygen absorption) or by N2 supplementation for O2 replacement. To generate a targeted cellular hypoxic microenvironment under ambient atmospheric conditions, we characterised the ability of the dissolved oxygen-depleting sodium sulfite to generate an in-liquid oxygen sink. We utilised a microfluidic design to place the cultured cells in the vertical oxygen gradient and to physically separate the cells from the liquid. We demonstrate generation of a chemical in-liquid oxygen sink that modifies the surrounding O2 concentrations. O2 level control in the sink-generated hypoxia gradient is achievable by varying the thickness of the polydimethylsiloxane membrane. We show that intracellular hypoxia and hypoxia response element-dependent signalling is instigated in cells exposed to the microfluidic in-liquid O2 sink-generated hypoxia gradient. Moreover, we show that microfluidic flow controls site-specific microenvironmental kinetics of the chemical O2 sink reaction, which enables generation of intermittent hypoxia/re-oxygenation cycles. The microfluidic O2 sink chip targets hypoxia to the cell culture microenvironment exposed to the microfluidic channel architecture solely by depleting O2 while other sites in the same culture well remain unaffected. Thus, responses of both hypoxic and bystander cells can be characterised. Moreover, control of microfluidic flow enables generation of intermittent hypoxia or hypoxia/re-oxygenation cycles. STATEMENT OF SIGNIFICANCE: Specific manipulation of oxygen concentrations in cultured cells' microenvironment is important when mimicking low-oxygen tissue conditions and pathologies such as tissue infarction or cancer. We utilised a sodium sulfite-based in-liquid chemical reaction to consume dissolved oxygen. When this liquid was pumped into a microfluidic channel, lowered oxygen levels could be measured outside the channel through a polydimethylsiloxane PDMS membrane allowing only for gaseous exchange. We then utilised this setup to deplete oxygen from the microenvironment of cultured cells, and showed that cells responded to hypoxia on molecular level. Our setup can be used for specifically removing oxygen from the cell culture microenvironment for experimental purposes and for generating a low oxygen environment that better mimics the cells' original tissue environments.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas Analíticas Microfluídicas/métodos , Nicho de Células-Tronco , Células-Tronco/metabolismo , Animais , Bovinos , Hipóxia Celular , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA