Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Polymers (Basel) ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543408

RESUMO

The application of mesoporous carriers in formulations of amorphous solid dispersions (ASDs) has been suggested to enhance the stability of amorphous drugs. However, mesoporous carriers do not demonstrate satisfactory inhibitory effects on the precipitation of active pharmaceutical ingredients (APIs), and the inclusion of an appropriate polymer within ASDs becomes imperative to maintaining drug supersaturation. The aim of this study was to evaluate ternary olanzapine (OLN) ASDs with Syloid 244FP and to find an appropriate polymeric carrier. The polymer's selection criteria were based on the physical stability of the ASDs and the release rate of the drug from the systems. The polymers investigated were hydroxypropylmethyl cellulose (HPMC) and copovidone (coPVP). The formation of ASDs was achievable in all investigated cases, as demonstrated by the complete lack of crystallinity confirmed through both powder X-ray diffraction (pXRD) analysis and differential scanning calorimetry (DSC) for all developed formulations. The solvent shift method was employed to evaluate the ability of the studied carriers to inhibit the precipitation of supersaturated OLN. coPVP emerged as a more suitable precipitation inhibitor compared with HPMC and Syloid 244 FP. Subsequently, in vitro dissolution studies under non-sink conditions revealed a higher degree of supersaturation in ternary systems where coPVP was used as a polymeric carrier, as these systems exhibited, under the examined conditions, up to a 2-fold increase in the released OLN compared with the pure crystalline drug. Moreover, stability studies conducted utilizing pXRD demonstrated that ternary formulations incorporating coPVP and Syloid 244 FP maintained stability for an extended period of 8 months. In contrast, binary systems exhibited a comparatively shorter stability duration, indicating the synergistic effect of coPVP and Syloid 244 FP on the physical stability of the amorphous API. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) studies showed that the development of stronger molecular interactions can be provided as an explanation for this synergistic effect, as the formation of robust H-bonds may be considered responsible for inhibiting the precipitation of the supersaturated API. Therefore, the incorporation of coPVP into OLN ASDs with Syloid 244 FP is considered a highly promising technique for increasing the degree of OLN supersaturation in in vitro dissolution studies and improving the stability of systems.

2.
J Funct Biomater ; 15(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38391897

RESUMO

BACKGROUND: The utilization of regenerative techniques in periodontology involves tailoring tissue engineering principles to suit the oral cavity's unique environment. Advancements in computer-assisted technology, specifically utilizing cone beam computed tomography (CBCT), enabled the fabrication of 3D-printed scaffolds. The current review aims to explore whether 3D-printed scaffolds are effective in promoting osteogenesis in patients with periodontal defects. METHODS: A thorough exploration was undertaken across seven electronic databases (PubMed, Scopus, ScienceDirect, Google Scholar, Cochrane, Web of Science, Ovid) to detect pertinent research in accordance with specified eligibility criteria, aligning with the PRISMA guidelines. Two independent reviewers undertook the screening and selection of manuscripts, executed data extraction, and evaluated the bias risk using the Newcastle-Ottawa Scale for non-randomized clinical trials and SYRCLE's risk of bias tool for animal studies. RESULTS: Initially, 799 articles were identified, refined by removing duplicates. After evaluating 471 articles based on title and abstract, 18 studies remained for full-text assessment. Eventually, merely two manuscripts fulfilled all the eligibility criteria concerning human trials. Both studies were prospective non-randomized clinical trials. Moreover, 11 animal studies were also included. CONCLUSIONS: The use of multidimensional, 3D-printed, customized scaffolds appears to stimulate periodontal regeneration. While the reported results are encouraging, additional studies are required to identify the ideal characteristics of the 3D scaffold to be used in the regeneration of periodontal tissue.

3.
J Pers Med ; 14(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38392640

RESUMO

The treatment of osseous defects around teeth is a fundamental concern within the field of periodontology. Over the years, the method of grafting has been employed to treat bone defects, underscoring the necessity for custom-designed scaffolds that precisely match the anatomical intricacies of the bone cavity to be filled, preventing the formation of gaps that could allow the regeneration of soft tissues. In order to create such a patient-specific scaffold (bone graft), it is imperative to have a highly detailed 3D representation of the bone defect, so that the resulting scaffold aligns with the ideal anatomical characteristics of the bone defect. In this context, this article implements a workflow for designing 3D models out of patient-specific tissue defects, fabricated as scaffolds with 3D-printing technology and bioabsorbable materials, for the personalized treatment of periodontitis. The workflow is based on 3D modeling of the hard tissues around the periodontal defect (alveolar bone and teeth), scanned from patients with periodontitis. Specifically, cone beam computed tomography (CBCT) data were acquired from patients and were used for the reconstruction of the 3D model of the periodontal defect. The final step encompasses the 3D printing of these scaffolds, employing Fused Deposition Modeling (FDM) technology and 3D-bioprinting, with the aim of verifying the design accuracy of the developed methodοlogy. Unlike most existing 3D-printed scaffolds reported in the literature, which are either pre-designed or have a standard structure, this method leads to the creation of highly detailed patient-specific grafts. Greater accuracy and resolution in the macroarchitecture of the scaffolds were achieved during FDM printing compared to bioprinting, with the standard FDM printing profile identified as more suitable in terms of both time and precision. It is easy to follow and has been successfully employed to create 3D models of periodontal defects and 3D-printed scaffolds for three cases of patients, proving its applicability and efficiency in designing and fabricating personalized 3D-printed bone grafts using CBCT data.

4.
Molecules ; 28(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067450

RESUMO

Higher plants possess the ability to synthesize a great number of compounds with many different functions, known as secondary metabolites. Polyphenols, a class of flavonoids, are secondary metabolites that play a crucial role in plant adaptation to both biotic and abiotic environments, including UV radiation, high light intensity, low/high temperatures, and attacks from pathogens, among others. One of the compounds that has received great attention over the last few years is luteolin. The objective of the current paper is to review the extraction and detection methods of luteolin in plants of the Greek flora, as well as their luteolin content. Furthermore, plant species, crop management and environmental factors can affect luteolin content and/or its derivatives. Luteolin exhibits various biological activities, such as cytotoxic, anti-inflammatory, antioxidant and antibacterial ones. As a result, luteolin has been employed as a bioactive molecule in numerous applications within the food industry and the biomedical field. Among the different available options for managing periodontitis, dental care products containing herbal compounds have been in the spotlight owing to the beneficial pharmacological properties of the bioactive ingredients. In this context, luteolin's anti-inflammatory activity has been harnessed to combat periodontal disease and promote the restoration of damaged bone tissue.


Assuntos
Luteolina , Doenças Periodontais , Luteolina/farmacologia , Luteolina/uso terapêutico , Grécia , Plantas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Doenças Periodontais/tratamento farmacológico
5.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069075

RESUMO

Current clinical treatment of periodontitis alleviates periodontal symptoms and helps to keep the disease under control for extended periods. Despite this, a significant destruction of the tooth's underlying bone tissue often takes place progressively. Herein, we present a two-way therapeutic approach for local delivery of antibacterial agents and bone tissue regeneration, incorporating ~1% w/w tetracycline hydrochloride (TCH) into a 3D-printed scaffold composed of poly(ε-caprolactone) (PCL). Samples were assessed for their morphological, physicochemical, pharmacokinetic, and antibacterial properties. Furthermore, osteoprecursor cells (MC3T3-E1) were employed to evaluate the osteoinductive potential of the drug-loaded scaffolds. Cell proliferation, viability, and differentiation were determined on all cell-seeded scaffolds. At the end of the culture, PCL-TCH scaffolds promoted abundant collagen organic matrix, demonstrating augmented alkaline phosphatase (ALP) activity and areas of accumulated mineralised bone tissue, despite their belayed cell proliferation. Based on the observed effectiveness of the PCL-TCH scaffolds to inhibit Staphylococcus aureus, these constructs could serve as an alternative bioactive implant that supports bacterial inhibition and favours a 3D microenvironment for bone tissue regeneration in severe periodontitis.


Assuntos
Periodontite , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Engenharia Tecidual , Osteogênese , Poliésteres/química , Osso e Ossos , Antibacterianos/farmacologia , Regeneração Óssea , Tetraciclina/farmacologia , Periodontite/tratamento farmacológico , Impressão Tridimensional
6.
Polymers (Basel) ; 15(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37959973

RESUMO

Dronedarone (DRN), an antiarrhythmic drug, exhibits potent pharmacological effects in the management of cardiac arrhythmias. Despite its therapeutic potential, DRN faces formulation challenges due to its low aqueous solubility. Hence, the present study is dedicated to the examination of amorphous solid dispersions (ASDs) as a strategic approach for enhancing the solubility of DRN. Initially, the glass forming ability (GFA) of API was assessed alongside its thermal degradation profile, and it was revealed that DRN is a stable glass former (GFA III compound) that remains thermally stable up to approximately 200 °C. Subsequently, five commonly used ASD matrix/carriers, i.e., hydroxypropyl methylcellulose (HPMC), povidone (PVP), copovidone (PVP/VA), Soluplus® (SOL), and Eudragit® E PO (EPO), were screened for the formation of a DRN-based ASD using film casting and solvent shift methods, along with miscibility evaluation measurements. SOL proved to be the most promising matrix/carrier among the others, and, hence, was used to prepare DRN ASDs via the melt-quench method. The physicochemical characterization of the prepared systems (via pXRD) revealed the complete amorphization of the API within the matrix/carrier, while the system was physically stable for at least three months after its preparation. In vitro release studies for the ASDs, conducted under non-sink conditions, revealed the sustained supersaturation of the drug for at least 8 h. Finally, the use of attenuated total reflectance (ATR) FTIR spectroscopy showed the formation of a strong molecular interaction between the drug molecules and SOL.

7.
Int J Pharm ; 646: 123439, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37742821

RESUMO

In the present work, novel interpenetrated networks (IPNs) of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide) (SBMA) and poly(vinyl alcohol) (PVA) were prepared for the ocular co-administration of timolol maleate (TIM) and dorzolamide hydrochloride (DORZ), two drugs widely used for the treatment of glaucoma. The successful polymerization of SBMA, in the presence of PVA, led to the formation of semi-interpenetrated pSBMA-PVA networks (IPNs), in the form of sponges, exhibiting intrinsic antimicrobial properties attributed to SBMA. Fourier-transform infrared spectroscopy (FTIR) was utilized to confirm the successful synthesis of the IPNs. Further assessments, including contact angle and water sorption measurements, highlighted their significant hydrophilicity, a feature that makes them suitable for ocular applications. Differential scanning calorimetry (DSC) measurements indicated that PVA serves as a plasticizer, while an assessment of the water sorption capacity of these materials suggested that although the incorporation of PVA results in slightly less hydrophilic materials, the prepared sponges still remain sufficiently hydrophilic for ocular use. Following their characterization, the optimal pSBMA-PVA IPN was used to encapsulate TIM and DORZ. Irritation tests, performed using the HET-CAM method, confirmed that the drug-loaded sponges were safe and potentially well-tolerated for ophthalmic use. Finally, the co-release study for the two drugs revealed a sustained release pattern in both cases, while drug release from the sponges was primarily controlled by diffusion.

8.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631049

RESUMO

Xerostomia, commonly known as dry mouth, is a widespread oral health malfunction characterized by decreased salivary flow. This condition results in discomfort, impaired speech and mastication, dysphagia, heightened susceptibility to oral infections, and ultimately, a diminished oral health-related quality of life. The etiology of xerostomia is multifaceted, with primary causes encompassing the use of xerostomic medications, radiation therapy to the head and neck, and systemic diseases such as Sjögren's syndrome. Consequently, there is a growing interest in devising management strategies to address this oral health issue, which presents significant challenges due to the intricate nature of saliva. Historically, natural products have served medicinal purposes, and in contemporary pharmaceutical research and development, they continue to play a crucial role, including the treatment of xerostomia. In this context, the present review aims to provide an overview of the current state of knowledge regarding natural compounds and extracts for xerostomia treatment, paving the way for developing novel therapeutic strategies for this common oral health issue.

9.
Int J Pharm ; 640: 123004, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37142138

RESUMO

Continuing what previous studies had also intended, the present study aims to shed light on some unanswered questions concerning a recently introduced class of high drug loading (HD) amorphous solid dispersions (ASDs), based on the in-situ thermal crosslinking of poly (acrylic acid) (PAA) and poly (vinyl alcohols) (PVA). Initially, the effect of supersaturated dissolution conditions on the kinetic solubility profiles of the crosslinked HD ASDSs having indomethacin (IND) as a model drug, was determined. Subsequently, the safety profile of these new crosslinked formulations was determined for the first time by evaluating their cytotoxic effect on human intestinal epithelia cell line (Caco-2), while their ex-vivo intestinal permeability was also studied via the non-everted gut sac method. According to the obtained findings, the in-situ thermal crosslinked IND HD ASDs present similar kinetic solubility profiles when the dissolution studies are conducted with a steady sink index value, regardless of the different dissolution medium's volume and the total dose of the API. Additionally, the results showed a concentration- and time- dependent cytotoxicity profile for all formulations, while the neat crosslinked PAA/PVA matrices did not elicit cytotoxicity during the first 24 h, even at the highest examined concentration. Finally, the newly proposed HD ASD system, resulted in a remarkably increased ex-vivo intestinal permeability of IND.


Assuntos
Células CACO-2 , Humanos , Cristalização , Solubilidade , Composição de Medicamentos , Liberação Controlada de Fármacos
10.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499719

RESUMO

Limitations associated with the use of linear biodegradable polyesters in the preparation of anticancer nano-based drug delivery systems (nanoDDS) have turned scientific attention to the utilization of branched-chain (co-)polymers. In this context, the present study evaluates the use of novel branched poly(ε-caprolactone) (PCL)-based copolymers of different architectures for the preparation of anticancer nanoparticle (NP)-based formulations, using paclitaxel (PTX) as a model drug. Specifically, three PCL-polyol branched polyesters, namely, a three-arm copolymer based on glycerol (PCL-GLY), a four-arm copolymer based on pentaerythritol (PCL-PE), and a five-arm copolymer based on xylitol (PCL-XYL), were synthesized via ring-opening polymerization and characterized by proton nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), intrinsic viscosity, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy and cytotoxicity. Then, PTX-loaded NPs were prepared by an oil-in-water emulsion. The size of the obtained NPs varied from 200 to 300 nm, while the drug was dispersed in crystalline form in all formulations. High encapsulation efficiency and high yields were obtained in all cases, while FTIR analysis showed no molecular drug polymer. Finally, in vitro drug release studies showed that the studied nanocarriers significantly enhanced the dissolution rate and extent of the drug.


Assuntos
Antineoplásicos , Nanopartículas , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Poliésteres/química , Nanopartículas/química , Antineoplásicos/química , Paclitaxel/química , Portadores de Fármacos/química
11.
Polymers (Basel) ; 14(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36235952

RESUMO

The present study evaluates the use of thiolized chitosan conjugates (CS) in combination with two fundamental carbon nanoforms (carbon dots (CDs) and Hierarchical Porous Carbons (HPC)) for the preparation of intranasally (IN) administrated galantamine (GAL) nanoparticles (NPs). Initially, the modification of CS with L-cysteine (Cys) was performed, and the successful formation of a Cys-CS conjugates was verified via 1H-NMR, FTIR, and pXRD. The new Cys-CS conjugate showed a significant solubility enhancement in neutral and alkaline pH, improving CS's utility as a matrix-carrier for IN drug administration. In a further step, drug-loaded NPs were prepared via solid-oil-water double emulsification, and thoroughly analyzed by SEM, DLS, FTIR and pXRD. The results showed the formation of spherical NPs with a smooth surface, while the drug was amorphously dispersed within most of the prepared NPs, with the exemption of those systems contianing the CDs. Finally, in vitro dissolution release studies revealed that the prepared NPs could prolong GAL's release for up to 12 days. In sum, regarding the most promising system, the results of the present study clearly suggest that the preparation of NPs using both Cys-CS and CDs results in a more thermodynamically stable drug dispersion, while a zero-order release profile was achieved, which is essential to attain a stable in vivo pharmacokinetic behavior.

12.
Pharmaceutics ; 14(8)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36015319

RESUMO

In the current work, a series of PCL polyesters with different molecular weights was synthesized and used for the fabrication of nanofibrous patches via electrospinning, as sustained release matrices for leflunomide's active metabolite, teriflunomide (TFL). The electrospinning conditions for each sample were optimized and it was found that only one material with high Mn (71,000) was able to produce structures with distinct fibers devoid of the presence of beads. The successful preparation of the fibers was determined by scanning electron microscopy (SEM).TFL (10, 20 and 30 wt%) in three different concentrations was incorporated into the prepared nanofibers, which were used in in vitro drug release experiments. The drug-loaded nanofibrous formulations were further characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and powder X-ray diffractometry (XRD).It was found that TFL was incorporated in an amorphous form inside the polymeric nanofibers and that significant molecular interactions were formed between the drug and the polyester. Additionally, in vitro dissolution studies showed that the PCL/TFL-loaded nanofibers exhibit a biphasic release profile, having an initial burst release phase, followed by a sustained release until 250 h. Finally, a kinetic analysis of the obtained profiles revealed that the drug release was directly dependent on the amount TFL incorporated into the nanofibers.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36011693

RESUMO

BACKGROUND: The use of herbal products in oral cavity has shown an increased popularity and potential benefits due to their additional anti-inflammatory and antioxidant properties as well as the lack of side effects related to their use. OBJECTIVE: To assess the clinical effectiveness of herbal dental products (mouthwash, dentifrice, gel) when compared to conventional products or placebo in periodontitis patients. MATERIAL AND METHODS: A systematic review with 22 studies was carried out using MEDLINE/Pubmed, EMBASE and Web of Science databases in addition to hand searches. Randomized and non-randomized clinical trials that evaluated the effect of any herbal dental product and compared it with conventional products or placebo in periodontitis patients and published up to March 2022, were screened. RESULTS: Herbal products used as adjuncts to scaling and root planing (SRP) or supragingival debridement (SPD) led to superior clinical outcomes than placebo or no adjuncts (8 studies). In conjunction with SRP, these products showed comparable outcomes with chlorhexidine (6 studies) or better (4 studies). When used as adjuncts to SPD, herbal oral care products demonstrated comparable outcomes with chlorhexidine and conventional products (4 studies). CONCLUSIONS: Within the limitations of this systematic review, herbal oral care products may play a key role in the management of periodontal disease. Further well-designed studies are needed to establish their efficacy.


Assuntos
Periodontite Crônica , Doenças Periodontais , Periodontite , Clorexidina , Periodontite Crônica/tratamento farmacológico , Humanos , Periodontite/tratamento farmacológico , Aplainamento Radicular , Resultado do Tratamento
14.
AAPS PharmSciTech ; 23(6): 214, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35918468

RESUMO

The present study investigates the preparation of amorphous solid dispersions (ASD) for the ent-kaurane diterpenoid siderol (SDR). Initially, evaluation of the pure drug (isolated from Sideritis scardica) revealed that the API is a non-stable glass former, and hence the selection of a suitable ASD's matrix/carrier needs special attention. For this reason, four commonly used polymers and copolymers, namely poly(vinylpyrrolidone), copovidone, hydroxypropyl cellulose, and Soluplus® (SOL), were screened via film casting and crystal growth rate measurements. Amongst them, SOL showed the highest SDR's crystal growth rate reduction, and, since it was also miscible with the drug, it was selected for further testing. In this direction, SDR-SOL ASDs were successfully prepared via melt-quench cooling. These formulations showed full API amorphization, while good physical stability (i.e., a stable SDR amorphous dispersions) were obtained after storage for several months. Finally, evaluation of molecular interactions (with the aid of ATR-FTIR spectroscopy) showed strong H-bonds between SOL and SDR, while the use of molecular dynamics (MD) simulations unraveled the nature of these interactions. Therefore, based on the findings of the present work, SOL seems to be an appropriate matrix/carrier for the preparation of SDR ASDs, although further studies are needed in order to explore its full potentials.


Assuntos
Excipientes , Polímeros , Composição de Medicamentos/métodos , Polímeros/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
15.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35745681

RESUMO

Xerostomia is linked to an increased risk of dental caries, oral fungal infections, and speaking/swallowing difficulties, factors that may significantly degrade patients' life, socially- or emotionally-wise. Consequently, there is an increasing interest in developing management approaches for confronting this oral condition, at which pilocarpine, a parasympathomimetic agent, plays a vital role. Although the therapeutic effects of orally administrated pilocarpine on the salivary gland flow and the symptoms of xerostomia have been proved by numerous studies, the systemic administration of this drug is affiliated with various adverse effects. Some of the typical adverse effects include sweating, nausea, vomiting, diarrhea, rhinitis, dizziness and increased urinary frequency. In this vein, new strategies to develop novel and effective dosage forms for topical (i.e., in the oral cavity) pilocarpine administration, in order for the salivary flow to be enhanced with minimal systemic manifestations, have emerged. Therefore, the purpose of the current review is to survey the literature concerning the performance of topical pilocarpine delivery systems. According to the findings, the topical delivery of pilocarpine can be regarded as the equivalent to systemic delivery of the drug, efficacy-wise, but with improved patient tolerance and less adverse effects.

16.
Polymers (Basel) ; 14(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35267672

RESUMO

The medical term xerostomia refers to the subjective sensation of oral dryness. The etiology seems to be multifactorial with the most frequently reported causes being the use of xerostomic medications, neck and head radiation, and systematic diseases (such as Sjögren's syndrome). Xerostomia is associated with an increased incidence of dental caries, oral fungal infections, and difficulties in speaking and chewing/swallowing, which ultimately affect the oral health-related quality of life. The development of successful management schemes is regarded as a highly challenging project due to the complexity of saliva. This is why, in spite of the fact that there are therapeutic options aiming to improve salivary function, most management approaches are alleviation-oriented. In any case, polymers are an integral part of the various formulations used in every current treatment approach, especially in the saliva substitutes, due to their function as thickening and lubricating agents or, in the case of mucoadhesive polymers, their ability to prolong the treatment effect. In this context, the present review aims to scrutinize the literature and presents an overview of the role of various polymers (or copolymers) on either already commercially available formulations or novel drug delivery systems currently under research and development.

17.
Polymers (Basel) ; 15(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616519

RESUMO

Luteolin (LUT), a bioactive flavonoid, possesses various pharmacological properties, including antioxidant, antimicrobial, anti-allergic, cardio-protective, and anti-cancer activity. Among them, LUT's administration for the treatment of periodontal disease is very promising. However, its low water solubility magnifies the challenge of formulating LUT into an effective dosage form. In this vein, the aim of the present study examines the preparation of amorphous solid dispersions (ASD) for the solubility improvement of LUT in saliva. At first, the physicochemical properties of the active pharmaceutical ingredient (API) were studied before the selection of the most suitable ASD matrix/carrier. For this reason, six commonly used polymeric ASD matrix/carriers (namely, povidone, PVP; copovidone, coPVP; hydroxypropyl cellulose, HPC-SL; hydroxypropyl methyl cellulose acetate succinate, HPMC-AS; Eudragit® RS, Eud-RS; and Soluplus®, SOL) were screened via the film casting method, as to whether they could suspend the drug's recrystallization. The most promising matrix/carriers were then evaluated, based on their ability to inhibit LUT's precipitation after its solubilization, via the solvent shift method. Based on both screening methods, it was determined that PVP was the most promising matrix/carrier for the preparation of LUT's ASDs. Hence, in a further step, after the successful testing of components' miscibility, LUT-PVP ASDs were prepared via the solvent evaporation method. These systems (examined via powder X-ray diffractometry, pXRD) showed full API amorphization immediately after preparation and excellent physical stability (since they were stable after 3 months of storage). The study of LUT-PVP ASD's ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) spectra demonstrated strong H-bonds between the molecules of the drug and the matrix/carrier, while molecular dynamics (MD) simulations were able to shed light on these drug-matrix/carrier interactions, at a molecular level. Finally, in vitro dissolution studies in simulated saliva proved that the prepared ASDs were able to significantly enhance LUT's dissolution profile. Hence, according to findings of the present work, the preparation of LUT-ASDs utilizing PVP as the polymeric matrix/carrier is regarded as a highly promising technique for the improvement of API's solubility in the oral cavity.

18.
Mol Pharm ; 18(12): 4393-4414, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34699238

RESUMO

This article takes a step forward in understanding the mechanisms involved during the preparation and performance of cross-linked high-drug-loading (HDL) amorphous solid dispersions (ASDs). Specifically, ASDs, having 90 wt % poorly water-soluble drug indomethacin (IND), were prepared via in situ thermal cross-linking of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) and thoroughly evaluated in terms of physical stability and in vitro supersaturation. Results showed that HDL ASDs having excellent active pharmaceutical ingredient (API) amorphous stability and prolonged in vitro supersaturation were prepared by fine tuning the cross-linking procedure. Unraveling of the processes involved during ASD's formation shed light on the significant role of the cross-linking conditions (i.e., temperature and time), the physicochemical properties of the API, and the hydrolysis level of the cross-linker as key factors in modulating ASD's stability. In-depth analysis of the prepared systems revealed the (1) reduction of API's molecular motions within the cross-linked polymeric networks (through API's strong spatial confinement), (2) the structural changes in the prepared cross-linked matrices (induced by the high API drug loading), and (3) the tuning of the cross-linking density via utilization of low-hydrolyzed PVA as the major mechanisms responsible for ASD's exceptional performance. Complementary analysis by means of molecular dynamics simulations also highlighted the vital role of strong drug-polymer intermolecular interactions evolving among the ASD components. Overall, the impression of the complexity of in situ cross-linked ASDs has been reinforced with the excessive variation of parameters investigated in the current study, offering thus insights up to the submolecular level to lay the groundwork and foundations for the comprehensive assessment of a new emerging class of HDL amorphous API formulations.


Assuntos
Estabilidade de Medicamentos , Indometacina/química , Reagentes de Ligações Cruzadas , Composição de Medicamentos , Liberação Controlada de Fármacos , Simulação de Dinâmica Molecular
19.
Polymers (Basel) ; 13(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502962

RESUMO

Although significant actions have been taken towards the utilization of poly(vinyl alcohol) (PVA) in the preparation of drug amorphous solid dispersions (ASDs) using fusion-based techniques (such as melt-quench cooling and hot-melt extrusion), several drawbacks regarding its rather high melting temperature and its thermal degradation profile make the use of the polymer extremely challenging. This is especially important when the active pharmaceutical ingredient (API) has a lower melting temperature (than PVA) or when it is thermally labile. In this vein, a previous study showed that newly synthesized polyester-based plasticizers may improve the processability and the thermal properties of PVA. However, the effects of such polyester-based plasticizers on the drug's physicochemical and pharmaco-technical properties are yet unknown. Hence, the aim of the present study is to extend our previous findings and evaluate the use of poly(propylene succinate) (PPSu, i.e., the most promising plasticizer in regard to PVA) in the preparation of drug-loaded PVA-based ASDs. Dronedarone (DRN), a poorly water-soluble API, was selected as a model drug, and drug ASDs (using either neat PVA or PVA-PPSu) were prepared using the melt-mixing/quench cooling approach at low melting temperatures (i.e., 170 °C). DSC and pXRD analysis showed that a portion of the API remained crystalline in the ASDs prepared only with the use of neat PVA, while the samples having PPSu as a plasticizer were completely amorphous. Further evaluation with ATR-FTIR spectroscopy revealed the formation of significant intermolecular interactions between the API and the PVA-PPSu matrix, which could explain the system's physical stability during storage. Finally, dissolution studies, conducted under nonsink conditions, revealed that the use of PVA-PPSu is able to maintain DRN's sustained supersaturation for up to 8 h.

20.
Pharmaceutics ; 13(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201567

RESUMO

The present study evaluates the use of newly synthesized poly(l-lactic acid)-co-poly(butylene adipate) (PLA/PBAd) block copolymers as microcarriers for the preparation of aripiprazole (ARI)-loaded long acting injectable (LAI) formulations. The effect of various PLA to PBAd ratios (95/5, 90/10, 75/25 and 50/50 w/w) on the enzymatic hydrolysis of the copolymers showed increasing erosion rates by increasing the PBAd content, while cytotoxicity studies revealed non-toxicity for all prepared biomaterials. SEM images showed the formation of well-shaped, spherical MPs with a smooth exterior surface and no particle's agglomeration, while DSC and pXRD data revealed that the presence of PBAd in the copolymers favors the amorphization of ARI. FTIR spectroscopy showed the formation of new ester bonds between the PLA and PBAd parts, while analysis of the MP formulations showed no molecular drug-polyester matrix interactions. In vitro dissolution studies suggested a highly tunable biphasic extended release, for up to 30 days, indicating the potential of the synthesized copolymers to act as promising LAI formulations, which will maintain a continuous therapeutic level for an extended time period. Lastly, several empirical and mechanistic models were also tested, with respect to their ability to fit the experimental release data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA