Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 836488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668791

RESUMO

The trait-based approach in plant ecology aims at understanding and classifying the diversity of ecological strategies by comparing plant morphology and physiology across organisms. The major drawback of the approach is that the time and financial cost of measuring the traits on many individuals and environments can be prohibitive. We show that combining near-infrared spectroscopy (NIRS) with deep learning resolves this limitation by quickly, non-destructively, and accurately measuring a suite of traits, including plant morphology, chemistry, and metabolism. Such an approach also allows to position plants within the well-known CSR triangle that depicts the diversity of plant ecological strategies. The processing of NIRS through deep learning identifies the effect of growth conditions on trait values, an issue that plagues traditional statistical approaches. Together, the coupling of NIRS and deep learning is a promising high-throughput approach to capture a range of ecological information on plant diversity and functioning and can accelerate the creation of extensive trait databases.

2.
Front Plant Sci ; 12: 741122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899774

RESUMO

Plants are daily challenged by multiple abiotic and biotic stresses. A major biotic constraint corresponds to competition with other plant species. Although plants simultaneously interact with multiple neighboring species throughout their life cycle, there is still very limited information about the genetics of the competitive response in the context of plurispecific interactions. Using a local mapping population of Arabidopsis thaliana, we set up a genome wide association study (GWAS) to estimate the extent of genetic variation of competitive response in 12 plant species assemblages, based on three competitor species (Poa annua, Stellaria media, and Veronica arvensis). Based on five phenotypic traits, we detected strong crossing reaction norms not only between the three bispecific neighborhoods but also among the plurispecific neighborhoods. The genetic architecture of competitive response was highly dependent on the identity and the relative abundance of the neighboring species. In addition, most of the enriched biological processes underlying competitive responses largely differ among neighborhoods. While the RNA related processes might confer a broad range response toolkit for multiple traits in diverse neighborhoods, some processes, such as signaling and transport, might play a specific role in particular assemblages. Altogether, our results suggest that plants can integrate and respond to different species assemblages depending on the identity and number of each neighboring species, through a large range of candidate genes associated with diverse and unexpected processes leading to developmental and stress responses.

3.
Sci Rep ; 9(1): 10758, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341185

RESUMO

Life history strategies of most organisms are constrained by resource allocation patterns that follow a 'slow-fast continuum'. It opposes slow growing and long-lived organisms with late investment in reproduction to those that grow faster, have earlier and larger reproductive effort and a short longevity. In plants, the Leaf Economics Spectrum (LES) depicts a leaf-level trade-off between the rate of carbon assimilation and leaf lifespan, as stressed in functional ecology from interspecific comparative studies. However, it is still unclear how the LES is connected to the slow-fast syndrome. Interspecific comparisons also impede a deep exploration of the linkage between LES variation and adaptation to climate. Here, we measured growth, morpho-physiological and life-history traits, at both the leaf and whole-plant levels, in 378 natural accessions of Arabidopsis thaliana. We found that the LES is tightly linked to variation in whole-plant functioning, and aligns with the slow-fast continuum. A genetic analysis further suggested that phenotypic differentiation results from the selection of different slow-fast strategies in contrasted climates. Slow growing and long-lived plants were preferentially found in cold and arid habitats while fast growing and short-lived ones in more favorable habitats. Our findings shed light on the role of the slow-fast continuum for plant adaptation to climate. More broadly, they encourage future studies to bridge functional ecology, genetics and evolutionary biology to improve our understanding of plant adaptation to environmental changes.


Assuntos
Arabidopsis/fisiologia , Folhas de Planta/fisiologia , Arabidopsis/crescimento & desenvolvimento , Ecologia , Geografia , Folhas de Planta/crescimento & desenvolvimento , Fenômenos Fisiológicos Vegetais
4.
New Phytol ; 224(4): 1532-1543, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31179544

RESUMO

Although interspecific variation in plant phenotype is recognised to impact afterlife processes such as litter decomposability, it is still unclear which traits and selection pressures explain these relationships. Examining intraspecific variation is crucial to identify and compare trait effects on decomposability, and investigate the potential role of natural selection. We studied the genetic variability and relationships between decomposability, plant traits typically related to decomposability at species level (morphophysiological traits), and leaf metabolites among a set of genotypes of Arabidopsis thaliana grown under controlled conditions. We also investigated correlations between decomposability and environmental variables at genotypes collection site. We investigated the genetic architecture of decomposability with genome-wide association studies (GWAS). There was large genetic variability in decomposability that was correlated with precipitation. Morphophysiological traits had a minor effect, while secondary metabolites, especially glucosinolates, were correlated with decomposability. Consistently, GWAS suggested that genes and metabolites related to the composition of cell membranes and envelopes control the variation of decomposability across genotypes. Our study suggests that decomposability varies within species as a result of metabolic adaptation to climate. Our findings highlight that subtle variations of defence-related metabolites like glucosinolates may strongly influence after-life processes such as decomposability.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Folhas de Planta/fisiologia , Clima , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Metabolismo Secundário
5.
Ann Bot ; 122(6): 935-945, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30256896

RESUMO

Background and aims: The CSR classification categorizes plants as stress tolerators (S), ruderals (R) and competitors (C). Initially proposed as a general framework to describe ecological strategies across species, this scheme has recently been used to investigate the variation of strategies within species. For instance, ample variation along the S-R axis was found in Arabidopsis thaliana, with stress-tolerator accessions predominating in hot and dry regions, which was interpreted as a sign of functional adaptation to climate within the species. Methods: In this study the range of CSR strategies within A. thaliana was evaluated across 426 accessions originating from North Africa to Scandinavia. A position in the CSR strategy space was allocated for every accession based on three functional traits: leaf area, leaf dry matter content (LDMC) and specific leaf area (SLA). Results were related to climate at origin and compared with a previous study performed on the same species. Furthermore, the role of natural selection in phenotypic differentiation between lineages was investigated with QST-FST comparisons, using the large amount of genetic information available for this species. Key Results: Substantial variation in ecological strategies along the S-R axis was found in A. thaliana. By contrast with previous findings, stress-tolerator accessions predominated in cold climates, notably Scandinavia, where late flowering was associated with traits related to resource conservation, such as high LDMC and low SLA. Because of trait plasticity, variations in CSR classification in relation to growth conditions were also observed for the same genotypes. Conclusions: There is a latitudinal gradient of ecological strategies in A. thaliana as a result of within-species adaptation to climate. Our study also underlines the importance of growth conditions and of the methodology used for trait measurement, notably age versus stage measurement, to infer the strength and direction of trait-environment relationships. This highlights the potential and limitations of the CSR classification in explaining functional adaptation to the environment.


Assuntos
Adaptação Biológica , Arabidopsis/fisiologia , Clima , Características de História de Vida , África do Norte , Biomassa , Europa (Continente) , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia
6.
Nat Ecol Evol ; 2(1): 194, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29208992

RESUMO

In the version of this Article previously published, there was a typographical error ('4' instead of '2') in the equations relating F ST and effective population size (N e) in the Methods section 'Genome-wide scan for selection based on temporal differentiation'. The correct equations are given below.[Formula: see text] [Formula: see text].

7.
Nat Ecol Evol ; 1(10): 1551-1561, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29185515

RESUMO

Rapid phenotypic evolution of quantitative traits can occur within years, but its underlying genetic architecture remains uncharacterized. Here we test the theoretical prediction that genes with intermediate pleiotropy drive adaptive evolution in nature. Through a resurrection experiment, we grew Arabidopsis thaliana accessions collected across an 8-year period in six micro-habitats representative of that local population. We then used genome-wide association mapping to identify the single-nucleotide polymorphisms (SNPs) associated with evolved and unevolved traits in each micro-habitat. Finally, we performed a selection scan by testing for temporal differentiation in these SNPs. Phenotypic evolution was consistent across micro-habitats, but its associated genetic bases were largely distinct. Adaptive evolutionary change was most strongly driven by a small number of quantitative trait loci (QTLs) with intermediate degrees of pleiotropy; this pleiotropy was synergistic with the per-trait effect size of the SNPs, increasing with the degree of pleiotropy. In addition, weak selection was detected for frequent micro-habitat-specific QTLs that shape single traits. In this population, A. thaliana probably responded to local warming and increased competition, in part mediated by central regulators of flowering time. This genetic architecture, which includes both synergistic pleiotropic QTLs and distinct QTLs within particular micro-habitats, enables rapid phenotypic evolution while still maintaining genetic variation in wild populations.


Assuntos
Adaptação Biológica , Arabidopsis/genética , Evolução Biológica , Pleiotropia Genética , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA