Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acad Radiol ; 26(3): 367-382, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30630659

RESUMO

RATIONALE AND OBJECTIVES: In this study, we compared a newly developed multibreath simultaneous alveolar oxygen tension and apparent diffusion coefficient (PAO2-ADC) imaging sequence to a single-breath acquisition, with the aim of mitigating the compromising effects of intervoxel flow and slow-filling regions on single-breath measurements, especially in chronic obstructive pulmonary disease (COPD) subjects. MATERIALS AND METHODS: Both single-breath and multibreath simultaneous PAO2-ADC imaging schemes were performed on a total of 10 human subjects (five asymptomatic smokers and five COPD subjects). Estimated PAO2 and ADC values derived from the different sequences were compared both globally and regionally. The distribution of voxels with nonphysiological values was also compared between the two schemes. RESULTS: The multibreath protocol decreased the ventilation defect volumes by an average of 12.9 ± 6.6%. The multibreath sequence generated nonphysiological PAO2 values in 11.0 ± 8.5% fewer voxels than the single-breath sequence. Single-breath PAO2 maps also showed more regions with gas-flow artifacts and general signal heterogeneity. On average, the standard deviation of the PAO2 distribution was 16.5 ± 7.0% lower using multibreath PAO2-ADC imaging, suggesting a more homogeneous gas distribution. Both mean and standard deviation of the ADC increased significantly from single- to multibreath imaging (p = 0.048 and p = 0.070, respectively), suggesting more emphysematous regions in the slow-filling lung. CONCLUSION: Multibreath PAO2-ADC imaging provides superior accuracy and efficiency compared to previous imaging protocols. PAO2 and ADC maps generated by multibreath imaging allowed for the qualification of various regions as emphysematous or obstructed, which single-breath PAO2 maps can only identify as defects. The simultaneous PAO2 and ADC measurements generated by the presented multibreath method were also more physiologically realistic, and allowed for more detailed analysis of the slow-filling regions characteristic of COPD subjects.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Enfisema/diagnóstico por imagem , Oxigênio/análise , Alvéolos Pulmonares/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Hélio , Humanos , Isótopos , Masculino , Pessoa de Meia-Idade , Pressão Parcial , Respiração
2.
Acad Radiol ; 26(3): 383-394, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30087068

RESUMO

RATIONALE AND OBJECTIVES: The purpose of this study was to assess the effectiveness of hyperpolarized helium-3 magnetic resonance (MR)-based imaging markers in predicting future forced expiratory volume in one second decline/chronic obstructive pulmonary disorder progression in smokers compared to current diagnostic techniques. MATERIALS AND METHODS: Total 60 subjects (15 nonsmokers and 45 smokers) participated in both baseline and follow-up visits (∼1.4 years apart). At both visits, subjects completed pulmonary function testing, a six-minute walk test , and the St. George Respiratory Questionnaire. Using helium-3 MR imaging, means (M) and standard deviations (H) of oxygen tension (PAO2), fractional ventilation, and apparent diffusion coefficient were calculated across 12 regions of interest in the lungs. Subjects who experienced FEV1 decline >100 mL/year were deemed "decliners," while those who did not were deemed "sustainers." Nonimaging and imaging prediction models were generated through a logistic regression model, which utilized measurements from sustainers and decliners. RESULTS: The nonimaging prediction model included the St. George Respiratory Questionnaire total score, diffusing capacity of carbon monoxide by the alveolar volume (DLCO/VA), and distance walked in a six-minute walk test. A receiving operating character curve for this model yielded a sensitivity of 75% and specificity of 68% with an overall area under the curve of 65%. The imaging prediction model generated following the same methodology included ADCH, FVH, and PAO2H. The resulting receiving operating character curve yielded a sensitivity of 87.5%, specificity of 82.8%, and an area under the curve of 89.7%. CONCLUSION: The imaging predication model generated from measurements obtained during 3He MR imaging is better able to predict future FEV1 decline compared to one based on current clinical tests and demographics. The imaging model's superiority appears to arise from its ability to distinguish well-circumscribed, severe disease from a more uniform distribution of moderately altered lung function, which is more closely associated with subsequent FEV1 decline.


Assuntos
Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Fumar/fisiopatologia , Adulto , Área Sob a Curva , Estudos de Casos e Controles , Progressão da Doença , Volume Expiratório Forçado , Hélio , Humanos , Isótopos , Pessoa de Meia-Idade , Oxigênio , Pressão Parcial , Capacidade de Difusão Pulmonar , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Curva ROC , Teste de Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA