Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Trends Hear ; 27: 23312165231182289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37611181

RESUMO

Lateralized sounds can orient visual attention, with benefits for audio-visual processing. Here, we asked to what extent perturbed auditory spatial cues-resulting from cochlear implants (CI) or unilateral hearing loss (uHL)-allow this automatic mechanism of information selection from the audio-visual environment. We used a classic paradigm from experimental psychology (capture of visual attention with sounds) to probe the integrity of audio-visual attentional orienting in 60 adults with hearing loss: bilateral CI users (N = 20), unilateral CI users (N = 20), and individuals with uHL (N = 20). For comparison, we also included a group of normal-hearing (NH, N = 20) participants, tested in binaural and monaural listening conditions (i.e., with one ear plugged). All participants also completed a sound localization task to assess spatial hearing skills. Comparable audio-visual orienting was observed in bilateral CI, uHL, and binaural NH participants. By contrast, audio-visual orienting was, on average, absent in unilateral CI users and reduced in NH listening with one ear plugged. Spatial hearing skills were better in bilateral CI, uHL, and binaural NH participants than in unilateral CI users and monaurally plugged NH listeners. In unilateral CI users, spatial hearing skills correlated with audio-visual-orienting abilities. These novel results show that audio-visual-attention orienting can be preserved in bilateral CI users and in uHL patients to a greater extent than unilateral CI users. This highlights the importance of assessing the impact of hearing loss beyond auditory difficulties alone: to capture to what extent it may enable or impede typical interactions with the multisensory environment.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Perda Auditiva Unilateral , Perda Auditiva , Localização de Som , Percepção da Fala , Adulto , Humanos , Sinais (Psicologia) , Audição , Implante Coclear/métodos
2.
Brain Commun ; 5(3): fcad138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168732

RESUMO

Prader-Willi syndrome is a rare neurodevelopmental genetic disorder characterized by various endocrine, cognitive and behavioural problems. The symptoms include an obsession for food and reduced satiety, which leads to hyperphagia and morbid obesity. Neuropsychological studies have reported that Prader-Willi patients display altered social interactions with a specific weakness in interpreting social information and responding to them, a symptom close to that observed in autism spectrum disorders. In the present case-control study, we hypothesized that brain regions associated with compulsive eating behaviour would be abnormally activated by food-related odours in Prader-Willi syndrome, as these can stimulate the appetite and induce hunger-related behaviour. We conducted a brain imaging study using the olfactory modality because odours have a high-hedonic valence and can cause stronger emotional reactions than other modalities. Further, the olfactory system is also intimately associated with the endocrine regulation of energy balance and is the most appropriate modality for studies of Prader-Willi syndrome. A total of 16 Prader-Willi participants were recruited for this study, which is a significant achievement given the low incidence rate of this rare disease. The second group of 11 control age-matched subjects also participated in the brain imaging study. In the MRI scanner, using an MRI-compatible olfactometer during 56 block sessions, we randomly presented two odours (tulip and caramel), which have different hedonic valence and a different capacity to arouse hunger-related behaviour. Our results demonstrate that Prader-Willi participants have abnormal activity in the brain reward system that regulates eating behaviour. Indeed, we found that these patients had right amygdala activity up to five times higher in response to a food odour (caramel) compared with the tulip odour. In contrast, age-matched control participants had similar activity levels in response to both odours. The amygdala activity levels were found to be associated with the severity of the hyperphagia in Prader-Willi patients. Our results provide evidence for functional alteration of the right amygdala in Prader-Willi syndrome, which is part of the brain network involved in food addiction modulated by the ghrelin and oxytocin systems, which may drive the hyperphagia. Our study provides important new insights into the functioning of emotion-related brain circuits and pathology, and it is one of the few to explore the dysfunction of the neural circuits involved in emotion and addiction in Prader-Willi syndrome. It suggests new directions for the exploration and remediation of addictive behaviours.

3.
J Clin Med ; 12(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36983357

RESUMO

Unilateral hearing loss (UHL) leads to an alteration of binaural cues resulting in a significant increment of spatial errors in the horizontal plane. In this study, nineteen patients with UHL were recruited and randomized in a cross-over design into two groups; a first group (n = 9) that received spatial audiovisual training in the first session and a non-spatial audiovisual training in the second session (2 to 4 weeks after the first session). A second group (n = 10) received the same training in the opposite order (non-spatial and then spatial). A sound localization test using head-pointing (LOCATEST) was completed prior to and following each training session. The results showed a significant decrease in head-pointing localization errors after spatial training for group 1 (24.85° ± 15.8° vs. 16.17° ± 11.28°; p < 0.001). The number of head movements during the spatial training for the 19 participants did not change (p = 0.79); nonetheless, the hand-pointing errors and reaction times significantly decreased at the end of the spatial training (p < 0.001). This study suggests that audiovisual spatial training can improve and induce spatial adaptation to a monaural deficit through the optimization of effective head movements. Virtual reality systems are relevant tools that can be used in clinics to develop training programs for patients with hearing impairments.

4.
Cereb Cortex ; 33(11): 7221-7236, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36806394

RESUMO

The ability to localize sounds in patients with Unilateral Hearing Loss (UHL) is usually disrupted due to alteration in the integration of binaural cues. Nonetheless, some patients are able to compensate deficit using adaptive strategies. In this study, we explored the neural correlates underlying this adaptation. Twenty-one patients with UHL were separated into 3 groups using cluster analysis based on their binaural performance. The resulting clusters were referred to as better, moderate, and poorer performers cluster (BPC, MPC, and PPC). We measured the mismatch negativity (MMN) elicited by deviant sounds located at 10°, 20°, and 100° from a standard positioned at 50° ipsilateral to the deaf ear. The BPC exhibited significant MMN for all 3 deviants, similar to normal hearing (NH) subjects. In contrast, there was no significant MMN for 10° and 20° deviants for the PPC and for NH when one ear was plugged and muffed. Scalp distribution was maximal over central regions in BPC, while PPC showed more frontal MMN distribution. Thus, the BPC exhibited a contralateral activation pattern, similar to NH, while the PPC exhibited more symmetrical hemispheric activation. MMN can be used as a neural marker to reflect spatial adaptation in patients with UHL.


Assuntos
Perda Auditiva Unilateral , Localização de Som , Humanos , Localização de Som/fisiologia , Testes Auditivos , Som , Plasticidade Neuronal
5.
Cereb Cortex ; 33(5): 2229-2244, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35640270

RESUMO

In asymmetric hearing loss (AHL), the normal pattern of contralateral hemispheric dominance for monaural stimulation is modified, with a shift towards the hemisphere ipsilateral to the better ear. The extent of this shift has been shown to relate to sound localization deficits. In this study, we examined whether cochlear implantation to treat postlingual AHL can restore the normal functional pattern of auditory cortical activity and whether this relates to improved sound localization. The auditory cortical activity was found to be lower in the AHL cochlear implanted (AHL-CI) participants. A cortical asymmetry index was calculated and showed that a normal contralateral dominance was restored in the AHL-CI patients for the nonimplanted ear, but not for the ear with the cochlear implant. It was found that the contralateral dominance for the nonimplanted ear strongly correlated with sound localization performance (rho = 0.8, P < 0.05). We conclude that the reorganization of binaural mechanisms in AHL-CI subjects reverses the abnormal lateralization pattern induced by the deafness, and that this leads to improved spatial hearing. Our results suggest that cochlear implantation enables the reconstruction of the cortical mechanisms of spatial selectivity needed for sound localization.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Perda Auditiva , Localização de Som , Percepção da Fala , Humanos , Implante Coclear/métodos , Audição/fisiologia , Localização de Som/fisiologia , Tomografia por Emissão de Pósitrons , Percepção da Fala/fisiologia
6.
Brain Sci ; 12(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35447955

RESUMO

In children, single-sided deafness (SSD) affects the development of linguistic and social skills and can impede educational progress. These difficulties may relate to cortical changes that occur following SSD, such as reduced inter-hemispheric functional asymmetry and maladaptive brain plasticity. To investigate these neuronal changes and their evolution in children, a non-invasive technique is required that is little affected by motion artifacts. Here, we present a research protocol that uses functional near-infrared spectroscopy (fNIRS) to evaluate the reorganization of cortical auditory asymmetry in children with SSD; it also examines how the cortical changes relate to auditory and language skills. The protocol is designed for children whose SSD has not been treated, because hearing restoration can alter both brain reorganization and behavioral performance. We propose a single-center, cross-sectional study that includes 30 children with SSD (congenital or acquired moderate-to-profound deafness) and 30 children with normal hearing (NH), all aged 5-16 years. The children undergo fNIRS during monaural and binaural stimulation, and the pattern of cortical activity is analyzed using measures of the peak amplitude and area under the curve for both oxy- and deoxyhemoglobin. These cortical measures can be compared between the two groups of children, and analyses can be run to determine whether they relate to binaural hearing (speech-in-noise and sound localization), speech perception and production, and quality of life (QoL). The results could be of relevance for developing individualized rehabilitation programs for SSD, which could reduce patients' difficulties and prevent long-term neurofunctional and clinical consequences.

7.
Eur J Neurosci ; 54(9): 7141-7151, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34550613

RESUMO

Spatial integration during the brain's cognitive activity prompts changes in energy used by different neuroglial populations. Nevertheless, the organisation of such integration in 3D -brain activity remains undescribed from a quantitative standpoint. In response, we applied a cross-correlation between brain activity and integrative models, which yielded a deeper understanding of information integration in functional brain mapping. We analysed four datasets obtained via fundamentally different neuroimaging techniques (functional magnetic resonance imaging [fMRI] and positron emission tomography [PET]) and found that models of spatial integration with an increasing input to each step of integration were significantly more correlated with brain activity than models with a constant input to each step of integration. In addition, marking the voxels with the maximal correlation, we found exceptionally high intersubject consistency with the initial brain activity at the peaks. Our method demonstrated for the first time that the network of peaks of brain activity is organised strictly according to the models of spatial integration independent of neuroimaging techniques. The highest correlation with models integrating an increasing at each step input suggests that brain activity reflects a network of integrative processes where the results of integration in some neuroglial populations serve as an input to other neuroglial populations.


Assuntos
Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Neuroimagem
8.
Hear Res ; 410: 108330, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492444

RESUMO

Cochlear implanted (CI) adults with acquired deafness are known to depend on multisensory integration skills (MSI) for speech comprehension through the fusion of speech reading skills and their deficient auditory perception. But, little is known on how CI patients perceive prosodic information relating to speech content. Our study aimed to identify how CI patients use MSI between visual and auditory information to process paralinguistic prosodic information of multimodal speech and the visual strategies employed. A psychophysics assessment was developed, in which CI patients and hearing controls (NH) had to distinguish between a question and a statement. The controls were separated into two age groups (young and aged-matched) to dissociate any effect of aging. In addition, the oculomotor strategies used when facing a speaker in this prosodic decision task were recorded using an eye-tracking device and compared to controls. This study confirmed that prosodic processing is multisensory but it revealed that CI patients showed significant supra-normal audiovisual integration for prosodic information compared to hearing controls irrespective of age. This study clearly showed that CI patients had a visuo-auditory gain more than 3 times larger than that observed in hearing controls. Furthermore, CI participants performed better in the visuo-auditory situation through a specific oculomotor exploration of the face as they significantly fixate the mouth region more than young NH participants who fixate the eyes, whereas the aged-matched controls presented an intermediate exploration pattern equally reported between the eyes and mouth. To conclude, our study demonstrated that CI patients have supra-normal skills MSI when integrating visual and auditory linguistic prosodic information, and a specific adaptive strategy developed as it participates directly in speech content comprehension.


Assuntos
Implante Coclear , Implantes Cocleares , Percepção da Fala , Estimulação Acústica , Surdez/diagnóstico , Surdez/cirurgia , Humanos
9.
J Clin Med ; 10(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068067

RESUMO

In the case of hearing loss, cochlear implants (CI) allow for the restoration of hearing. Despite the advantages of CIs for speech perception, CI users still complain about their poor perception of their auditory environment. Aiming to assess non-verbal auditory perception in CI users, we developed five listening tests. These tests measure pitch change detection, pitch direction identification, pitch short-term memory, auditory stream segregation, and emotional prosody recognition, along with perceived intensity ratings. In order to test the potential benefit of visual cues for pitch processing, the three pitch tests included half of the trials with visual indications to perform the task. We tested 10 normal-hearing (NH) participants with material being presented as original and vocoded sounds, and 10 post-lingually deaf CI users. With the vocoded sounds, the NH participants had reduced scores for the detection of small pitch differences, and reduced emotion recognition and streaming abilities compared to the original sounds. Similarly, the CI users had deficits for small differences in the pitch change detection task and emotion recognition, as well as a decreased streaming capacity. Overall, this assessment allows for the rapid detection of specific patterns of non-verbal auditory perception deficits. The current findings also open new perspectives about how to enhance pitch perception capacities using visual cues.

10.
PLoS One ; 16(5): e0251739, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014959

RESUMO

Multisensory facilitation is known to improve the perceptual performances and reaction times of participants in a wide range of tasks, from detection and discrimination to memorization. We asked whether a multimodal signal can similarly improve action inhibition using the stop-signal paradigm. Indeed, consistent with a crossmodal redundant signal effect that relies on multisensory neuronal integration, the threshold for initiating behavioral responses is known for being reached faster with multisensory stimuli. To evaluate whether this phenomenon also occurs for inhibition, we compared stop signals in unimodal (human faces or voices) versus audiovisual modalities in natural or degraded conditions. In contrast to the expected multisensory facilitation, we observed poorer inhibition efficiency in the audiovisual modality compared with the visual and auditory modalities. This result was corroborated by both response probabilities and stop-signal reaction times. The visual modality (faces) was the most effective. This is the first demonstration of an audiovisual impairment in the domain of perception and action. It suggests that when individuals are engaged in a high-level decisional conflict, bimodal stimulation is not processed as a simple multisensory object improving the performance but is perceived as concurrent visual and auditory information. This absence of unity increases task demand and thus impairs the ability to revise the response.


Assuntos
Estimulação Acústica , Percepção Auditiva/fisiologia , Estimulação Luminosa , Tempo de Reação/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino
11.
Brain Behav Immun ; 94: 159-174, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33609652

RESUMO

BACKGROUND: Several lines of evidence suggest that neuroinflammation might be a key neurobiological mechanism of depression. In particular, the P2X7 receptor (P2X7R), an ATP-gated ion channel involved in activation of the pro-inflammatory interleukin IL-1ß, has been shown to be a potential new pharmacological target in depression. The aim of this study was to explore the impact of unpredictable chronic mild stress (UCMS) on behavioural changes, hippocampal neurogenesis, and cellular characterisation of brain immune cells, in P2X7R Knock-Out (KO) mice. METHODS: P2X7R KO and wild-type (WT) mice were subjected to a 6-week UCMS protocol and received a conventional oral antidepressant (15 mg.kg-1 fluoxetine) or water per os. The mice then underwent behavioural tests consisting of the tail suspension test (TST), the elevated plus maze (EPM) test, the open field test, the splash test and the nest building test (week 7). Doublecortin immunostaining (DCX) of brain slices was used to assess neurogenesis in the dentate gyrus. Iba1 and TMEM119 immunostaining was used to characterise brain immune cells, Iba1 as a macrophage marker (including microglial cells) and TMEM119 as a potential specific resident microglial cells marker. RESULTS: After a 6-week UCMS exposure, P2X7R KO mice exhibited less deterioration of their coat state, spent a significantly smaller amount of time immobile in the TST and spent a larger amount of time in the open arms of the EPM. As expected, adult ventral hippocampal neurogenesis was significantly decreased by UCMS in WT mice, while P2X7R KO mice maintained ventral hippocampal neurogenesis at similar levels in both control and UCMS conditions. In stress-related brain regions, P2X7R KO mice also exhibited less recruitment of Iba1+/TMEM119+ and Iba1+/TMEM119- cells in the brain. The ratio between these two staining patterns revealed that brain immune cells were mostly composed of Iba1+/TMEM119+ cells (87 to 99%), and this ratio was affected neither by P2X7R genetic depletion nor by antidepressant treatment. DISCUSSION: Behavioural patterns, neurogenesis levels and density of brain immune cells in P2X7R KO mice after exposure to UCMS significantly differed from control conditions. Brain immune cells were mostly increased in brain regions known to be sensitive to UCMS exposure in WT but not in P2X7R KO mice. Considering Iba1+/TMEM119- staining might characterize peripheral immune cells, the ratio between Iba1+/TMEM119+ cells and IBA1+/TMEM119- cells, suggests that the rate of peripheral immune cells recruitment may not be modified neither by P2X7R gene expression nor by antidepressant treatment.


Assuntos
Depressão , Estresse Psicológico , Animais , Antidepressivos , Modelos Animais de Doenças , Proteína Duplacortina , Hipocampo , Camundongos , Camundongos Knockout , Receptores Purinérgicos P2X7/genética
12.
Eur J Neurosci ; 53(1): 151-171, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32150310

RESUMO

Some recent clinical and preclinical evidence suggests that neuroinflammation is a key factor that interacts with the three neurobiological correlates of major depressive disorder: depletion of brain serotonin, dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis and alteration of the continuous production of adult-generated neurons in the dentate gyrus of the hippocampus. This review discusses the main players in brain immunity as well as how inflammation interacts with the above three mechanisms. It is reported that kynurenine (KYN) pathway alteration in favour of its excitotoxic component and HPA axis dysregulation have the common effect of increasing extracellular glutamate levels and glutamate neurotransmission, which can impact hippocampal neurogenesis. This pathophysiological cascade appears to be triggered or sustained and reinforced by any chronic inflammatory condition involving increased circulating markers of inflammation that are able to cross the blood-brain barrier and activate microglia; it can also be the consequence of primary brain neuroinflammation, such as in neurodegenerative disorders with early manifestations that are frequently depressive symptoms. Further recent data indicate that primary microglial activation may also result from a direct impact of chronic stress on vascular function. The intricated dynamic crosstalk between neuroinflammation and other relevant neurobiological correlates of depression add to evidence that neuroinflammation may be a key therapeutic target for future therapeutic strategies in major depressive disorder.


Assuntos
Transtorno Depressivo Maior , Sistema Hipotálamo-Hipofisário , Depressão , Hipocampo , Humanos , Neurogênese , Sistema Hipófise-Suprarrenal
13.
Neuropsychologia ; 149: 107683, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33212140

RESUMO

Unilateral hearing loss (UHL) generates a disruption of binaural hearing mechanisms, which impairs sound localization and speech understanding in noisy environments. We conducted an original study using fMRI and psychoacoustic assessments to investigate the relationships between the extent of cortical reorganization across the auditory areas for UHL patients, the severity of unilateral hearing loss, and the deficit in binaural abilities. Twenty-eight volunteers (14 UHL patients) were recruited (twenty-two females and six males). The brain imaging analysis demonstrated that UHL induces a shift in aural dominance favoring the better ear, with a cortical reorganization located in the non-primary auditory areas, ipsilateral (same side) to the better ear. This reorganization is correlated not only to the hearing loss severity but also to spatial localization abilities. A regression analysis between brain activity and patient's performance clearly showed that the spatial hearing deficit was linked to a functional alteration of the posterior auditory areas known to process spatial hearing. Altogether, our study reveals that UHL alters the dorsal auditory stream, which is deleterious to spatial hearing.


Assuntos
Perda Auditiva Unilateral , Localização de Som , Percepção da Fala , Feminino , Audição , Perda Auditiva Unilateral/diagnóstico por imagem , Testes Auditivos , Humanos , Masculino
14.
Neuroimage ; 223: 117326, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32882381

RESUMO

Modern neuroimaging represents three-dimensional brain activity, which varies across brain regions. It remains unknown whether activity of different brain regions has similar spatial organization to reflect similar cognitive processes. We developed a rotational cross-correlation method allowing a straightforward analysis of spatial activity patterns distributed across the brain in stimulation specific contrast images. Results of this method were verified using several statistical approaches on real and simulated random datasets. We found, for example, that the seed patterns in the fusiform face area were robustly correlated to brain regions involved in face-specific representations. These regions differed from the non-specific visual network meaning that activity structure in the brain is locally preserved in stimulus-specific regions. Our findings indicate spatially correlated perceptual representations in cerebral activity and suggest that the 3D coding of the processed information is organized using locally preserved activity patterns across the brain. More generally, our results demonstrate that information is represented and shared in the local spatial configurations of brain activity.


Assuntos
Encéfalo/fisiologia , Percepção Visual/fisiologia , Mapeamento Encefálico/métodos , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Imageamento por Ressonância Magnética , Estimulação Luminosa , Software
15.
Orphanet J Rare Dis ; 15(1): 22, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959191

RESUMO

BACKGROUND: Prader-Willi syndrome (PWS) is a rare and complex neurodevelopmental disorder of genetic origin. It manifests itself in endocrine and cognitive problems, including highly pronounced hyperphagia and severe obesity. In many cases, impaired acquisition of social and communication skills leads to autism spectrum features, and individuals with this syndrome are occasionally diagnosed with autism spectrum disorder (ASD) using specific scales. Given that communicational skills are largely based on vocal communication, it is important to study human voice processing in PWS. We were able to examine a large number of participants with PWS (N = 61) recruited from France's national reference center for PWS and other hospitals. We tested their voice and nonvoice recognition abilities, as well as their ability to distinguish between voices and nonvoices in a free choice task. We applied the hierarchical drift diffusion model (HDDM) with Bayesian estimation to compare decision-making in participants with PWS and controls. RESULTS: We found that PWS participants were impaired on both voice and nonvoice processing, but displayed a compensatory ability to perceive voices. Participants with uniparental disomy had poorer voice and nonvoice perception than participants with a deletion on chromosome 15. The HDDM allowed us to demonstrate that participants with PWS need to accumulate more information in order to make a decision, are slower at decision-making, and are predisposed to voice perception, albeit to a lesser extent than controls. CONCLUSIONS: The categorization of voices and nonvoices is generally preserved in participants with PWS, though this may not be the case for the lowest IQ.


Assuntos
Transtorno do Espectro Autista , Síndrome de Prader-Willi , Transtorno do Espectro Autista/genética , Teorema de Bayes , Humanos , Síndrome de Prader-Willi/genética , Dissomia Uniparental
16.
Cereb Cortex ; 30(3): 1407-1421, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31504286

RESUMO

There is an extensive modification of the functional organization of the brain in the congenital blind human, although there is little understanding of the structural underpinnings of these changes. The visual system of macaque has been extensively characterized both anatomically and functionally. We have taken advantage of this to examine the influence of congenital blindness in a macaque model of developmental anophthalmia. Developmental anophthalmia in macaque effectively removes the normal influence of the thalamus on cortical development leading to an induced "hybrid cortex (HC)" combining features of primary visual and extrastriate cortex. Here we show that retrograde tracers injected in early visual areas, including HC, reveal a drastic reduction of cortical projections of the reduced lateral geniculate nucleus. In addition, there is an important expansion of projections from the pulvinar complex to the HC, compared to the controls. These findings show that the functional consequences of congenital blindness need to be considered in terms of both modifications of the interareal cortical network and the ascending visual pathways.


Assuntos
Cegueira/congênito , Corpos Geniculados/fisiopatologia , Córtex Visual/fisiopatologia , Vias Visuais/fisiologia , Animais , Cegueira/fisiopatologia , Mapeamento Encefálico/métodos , Feminino , Corpos Geniculados/fisiologia , Macaca fascicularis , Masculino , Neurônios/fisiologia , Tálamo/fisiologia , Tálamo/fisiopatologia , Córtex Visual/fisiologia , Vias Visuais/fisiopatologia
17.
J Neurosci Methods ; 332: 108550, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31838181

RESUMO

BACKGROUND: There is clear evidence that most of the paradigms that are used in the field of behavioral neuroscience suffer from a lack of reliability mainly because of oversimplification of both testing procedures and interpretations. In the present study we show how an already existing behavioral test, the olfactory habituation / dishabituation task, can be optimized in such a way that animal number and animal distress could be minimized, number/confidence of behavioral outcomes and number of explored behavioral dimensions could be increased. NEW METHOD: We used ethologically relevant technical and procedural changes associated with videotracking-based automated quantification of sniffing behavior to validate our new setup. Mainly internal and construct validity were challenged through the implementation of a series of simple experiments. RESULTS: We show that the new version of the test: 1) has very good within and inter laboratory replicability, 2) is sensitive to some environmental / experimental factors while insensitive to others, 3) allows investigating hedonism, both state and trait anxiety, efficacy of anxiolytic molecules, acute stress, mental retardation-related social impairments and learning and memory. 4) We also show that interest for both nonsocial and social odors is stable over time which makes repetitive testing possible. CONCLUSIONS: This work paves the way for future studies showing how behavioral tests / procedures may be improved by using ethologically relevant changes, in order to question laboratory animals more adequately. Refining behavioral tests may considerably increase predictivity of preclinical tests and, ultimately, help reinforcing translational research.


Assuntos
Odorantes , Olfato , Animais , Comportamento Animal , Habituação Psicofisiológica , Memória , Camundongos , Reprodutibilidade dos Testes
18.
Orphanet J Rare Dis ; 14(1): 262, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730500

RESUMO

BACKGROUND: Faces are critical social cues that must be perfectly processed in order to engage appropriately in everyday social interactions. In Prader-Willi Syndrome (PWS), a rare genetic disorder characterized by cognitive and behavioural difficulties including autism spectrum disorder, the literature referring to face processing is sparse. Given reports of poor social interactions in individuals with PWS, we sought to assess their face and emotion recognition skills during eyetracking recordings. RESULTS: Compared with controls, patients with PWS performed more poorly on face/emotion recognition. We observed atypical facial exploration by patients with maternal disomy. These patients looked preferentially at the mouth region, whereas patients with a deletion and controls were more attracted to the eye region. During social scenes, the exploration became more atypical as the social content increased. CONCLUSIONS: Our comprehensive study brings new insights into the face processing of patients with PWS. Atypical facial exploration was only displayed by patients with the maternal disomy subtype, corresponding to their higher rate of autism spectrum disorder. This finding strongly argues in favor of early identification of this genetic subgroup in order to optimize care by implementing tailored interventions for each patient as soon as possible.


Assuntos
Síndrome de Prader-Willi/genética , Adulto , Transtorno do Espectro Autista/genética , Reconhecimento Facial/fisiologia , Feminino , Genótipo , Humanos , Relações Interpessoais , Masculino
19.
Trends Hear ; 23: 2331216519866029, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31533581

RESUMO

Cochlear implantation in subjects with single-sided deafness (SSD) offers a unique opportunity to directly compare the percepts evoked by a cochlear implant (CI) with those evoked acoustically. Here, nine SSD-CI users performed a forced-choice task evaluating the similarity of speech processed by their CI with speech processed by several vocoders presented to their healthy ear. In each trial, subjects heard two intervals: their CI followed by a certain vocoder in Interval 1 and their CI followed by a different vocoder in Interval 2. The vocoders differed either (i) in carrier type-(sinusoidal [SINE], bandfiltered noise [NOISE], and pulse-spreading harmonic complex) or (ii) in frequency mismatch between the analysis and synthesis frequency ranges-(no mismatch, and two frequency-mismatched conditions of 2 and 4 equivalent rectangular bandwidths [ERBs]). Subjects had to state in which of the two intervals the CI and vocoder sounds were more similar. Despite a large intersubject variability, the PSHC vocoder was judged significantly more similar to the CI than SINE or NOISE vocoders. Furthermore, the No-mismatch and 2-ERB mismatch vocoders were judged significantly more similar to the CI than the 4-ERB mismatch vocoder. The mismatch data were also interpreted by comparing spiral ganglion characteristic frequencies with electrode contact positions determined from postoperative computed tomography scans. Only one subject demonstrated a pattern of preference consistent with adaptation to the CI sound processor frequency-to-electrode allocation table and two subjects showed possible partial adaptation. Those subjects with adaptation patterns presented overall small and consistent frequency mismatches across their electrode arrays.


Assuntos
Implante Coclear/métodos , Implantes Cocleares/normas , Perda Auditiva Unilateral/reabilitação , Adulto , Surdez/reabilitação , Feminino , Humanos , Masculino , Som , Fala , Percepção da Fala/fisiologia , Gânglio Espiral da Cóclea
20.
Sci Rep ; 9(1): 3532, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837546

RESUMO

Auditory categorization is an important process in the perception and understanding of everyday sounds. The use of cochlear implants (CIs) may affect auditory categorization and result in poor abilities. The current study was designed to compare how children with normal hearing (NH) and children with CIs categorize a set of everyday sounds. We tested 24 NH children and 24 children with CI on a free-sorting task of 18 everyday sounds corresponding to four a priori categories: nonlinguistic human vocalizations, environmental sounds, musical sounds, and animal vocalizations. Multiple correspondence analysis revealed considerable variation within both groups of child listeners, although the human vocalizations and musical sounds were similarly categorized. In contrast to NH children, children with CIs categorized some sounds according to their acoustic content rather than their associated semantic information. These results show that despite identification deficits, children with CIs are able to categorize environmental and vocal sounds in a similar way to NH children, and are able to use categorization as an adaptive process when dealing with everyday sounds.


Assuntos
Percepção Auditiva , Implante Coclear , Surdez/patologia , Estudos de Casos e Controles , Criança , Análise por Conglomerados , Testes Auditivos , Humanos , Música , Análise de Componente Principal , Som , Voz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA