Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Psychoneuroendocrinology ; 163: 106988, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342055

RESUMO

Perinatal testosterone, or its metabolite estradiol, organize the brain toward a male phenotype. Male rodents with insufficient testosterone during this period fail to display sexual behavior and partner preference for receptive females in adulthood. However, cohabitation with non-reproductive conspecifics under the influence of a D2 agonist facilitates the expression of conditioned partner preference via Pavlovian learning in gonadally intact male rats. In the present experiment, three groups of neonatal PD1 males (N = 12/group) were either gonadectomized (GDX), sham-GDX, or left intact and evaluated for social preferences and sexual behaviors as adults. We then examined whether the effects of GDX could be reversed by conditioning the males via cohabitation with receptive females under the effects of the D2 agonist quinpirole (QNP) or saline, along with the size of some brain regions, such as the sexually dimorphic nucleus of the preoptic area (SDN-POA), suprachiasmatic nucleus (SCN), posterior dorsal medial amygdala (MeApd) and ventromedial hypothalamus (VMH). Results indicated that neonatal GDX resulted in the elimination of male-typical sexual behavior, an increase in same-sex social preference, and a reduction of the area of the SDN-POA. However, GDX-QNP males that underwent exposure to receptive females in adulthood increased their social preference for females and recovered the size in the SDN-POA. Although neonatal GDX impairs sexual behavior and disrupts partner preference and brain dimorphism in adult male rats, Pavlovian conditioning under enhanced D2 agonism ameliorates the effects on social preference and restores brain dimorphism in the SDN-POA without testosterone.


Assuntos
Área Pré-Óptica , Caracteres Sexuais , Gravidez , Ratos , Animais , Masculino , Feminino , Área Pré-Óptica/metabolismo , Encéfalo , Quimpirol/farmacologia , Castração , Testosterona/farmacologia , Testosterona/metabolismo
2.
Am J Primatol ; 86(4): e23598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38258612

RESUMO

We report on an analytical and biological validation of a commercial cortisol enzyme immunoassay (EIA) to measure glucocorticoids (GC) in feces of Geoffroy's spider monkeys (Ateles geoffroyi). Validation of endocrinological methods for each sample matrix and study species is crucial to establish that the methods produce reliable results. For the analytical validation of the EIA, we assessed parallelism, accuracy, and precision. We carried out a biological validation based on three well-studied GC patterns with the following predictions: (1) increased fecal GC metabolite (fGCM) concentrations after veterinary intervention; (2) increased fGCM concentrations during early morning hours; and (3) higher fGCM concentrations during gestation than in other female reproductive states. For the first prediction, we sampled feces of two zoo-housed females 2 days before, the day of, and 2 days after a veterinary intervention. For the second prediction, we analyzed 284 fecal samples collected from 12 wild males using a linear mixed model (LMM). For the third prediction, we analyzed 269 fecal samples of eight wild females using an LMM. Analytical validation revealed that the EIA showed parallelism, was accurate, and precise within each assay. However, there was elevated variation in between-assay precision. The biological validation supported all predictions: (1) the two zoo-housed females showed a substantial increase in fGCM concentrations 2.5 and 11 h after veterinary intervention; (2) there was a negative effect of sample collection time on fGCM concentrations (i.e., higher concentrations during early morning); (3) gestating females had significantly higher fGCM concentrations than lactating females. Thus, we analytically validated the commercial EIA and, despite between-assay variation, we were able to find three biologically relevant GC signals in captive and wild settings, and in males and females. We are therefore confident that the method can be used to noninvasively address behavioral endocrinology questions in Geoffroy's spider monkeys.


Assuntos
Ateles geoffroyi , Glucocorticoides , Masculino , Animais , Feminino , Glucocorticoides/metabolismo , Lactação , Hidrocortisona , Fezes
3.
Behav Brain Res ; 374: 112117, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31362012

RESUMO

According to the organizational-activational hypothesis, testosterone or its metabolite estradiol, can organize the brain in a male direction (permanently or for long periods) if exposure occurs during a critical (sensitive) time of brain development like the prenatal period. Male rodents with insufficient levels of testosterone during such critical period would irreversibly fail to display sexual partner preference for receptive females in adulthood. However, exposure to testosterone during puberty is believed to function as a second critical period for organization of brain and behavior. Thus, in the present study we explored the effects of neonatal gonadectomy at postnatal day 1 (GNX) on the partner preference of adult males and the size of some sexually dimorphic regions in the brain like the SDN-MPOA, SCN, MeApd and VMH; and challenged its irreversibility by providing exogenous testosterone during puberty. Our results indicated that neonatal GNX impaired partner preference for females and reduced the size of SDN-MPOA, MeApd and VMH, but not SCN. GNX males restored with testosterone in PD30-PD59 (GNX + T) expressed partner preference for sexually receptive females and increased the size of SDN-MPOA and VMH, but not MeApd in adulthood. We conclude that neonatal castration and the lack of testosterone during the first month of life alters sexual behavior and brain dimorphism in adult male rats, but pubertal testosterone reverses the effects on behavior and brain dimorphism to some extent.


Assuntos
Castração/efeitos adversos , Casamento/psicologia , Testosterona/farmacologia , Fatores Etários , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Estradiol/farmacologia , Masculino , Área Pré-Óptica/efeitos dos fármacos , Ratos , Ratos Wistar , Comportamento Sexual Animal/efeitos dos fármacos , Maturidade Sexual , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA