Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Sci Rep ; 14(1): 21707, 2024 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289421

RESUMO

Sebum is a biofluid excreted by sebaceous glands in the skin. In recent years sebum has been shown to contain endogenous metabolites diagnostic of disease, with remarkable results for Parkinson's Disease. Given that sebum sampling is facile and non-invasive, its potential for use in clinical biochemistry diagnostic assays should be explored including the parameters for standard operating procedures around collection, transport, and storage. To this aim we have here investigated the reproducibility of mass spectrometry data from sebum in relation to both storage temperature and length of storage. Sebum samples were collected from volunteers and stored for up to four weeks at a range of temperatures: ambient (circa 17 °C), -20 °C and -80 °C. Established extraction protocols were employed and samples were analysed by two chromatographic mass spectrometry techniques and data investigated using PCA, PLS-DA and ANOVA. We cannot discriminate samples as a function of storage temperature or time stored in unsupervised analysis using data acquired via TD-GC-MS and LC-IM-MS, although the sampling of volatiles was susceptible to batch effects. This study indicates that the requirements for storage and transport of sebum samples that may be used in clinical assays are less stringent than for liquid samples and indicate that sebum is suitable for remote and at home sampling prior to analysis.


Assuntos
Espectrometria de Massas , Metabolômica , Sebo , Manejo de Espécimes , Sebo/metabolismo , Humanos , Metabolômica/métodos , Manejo de Espécimes/métodos , Espectrometria de Massas/métodos , Temperatura , Masculino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Feminino , Reprodutibilidade dos Testes , Adulto
2.
J Proteome Res ; 23(8): 3626-3637, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38993068

RESUMO

Within the intricate landscape of the proteome, approximately 30% of all proteins bind metal ions. This repertoire is even larger when considering all the different forms of a protein, known as proteoforms. Here, we propose the term "metalloforms" to refer to different structural or functional variations of a protein resulting from the binding of various hetero- or homogeneous metal ions. Using human Cu(I)/Zn(II)-metallothionein-3 as a representative model, we developed a chemical proteomics strategy to simultaneously differentiate and map Zn(II) and Cu(I) metal binding sites. In the first labeling step, N-ethylmaleimide reacts with Cysteine (Cys), resulting in the dissociation of all Zn(II) ions while Cu(I) remains bound to the protein. In the second labeling step, iodoacetamide is utilized to label Cu(I)-bound Cys residues. Native mass spectrometry (MS) was used to determine the metal/labeling protein stoichiometries, while bottom-up/top-down MS was used to map the Cys-labeled residues. Next, we used a developed methodology to interrogate an isolated rabbit liver metallothionein fraction containing three metallothionein-2 isoforms and multiple Cd(II)/Zn(II) metalloforms. The approach detailed in this study thus holds the potential to decode the metalloproteoform diversity within other proteins.


Assuntos
Cobre , Espectrometria de Massas , Metalotioneína , Proteômica , Zinco , Proteômica/métodos , Humanos , Zinco/metabolismo , Zinco/análise , Zinco/química , Cobre/metabolismo , Cobre/química , Animais , Metalotioneína/química , Metalotioneína/metabolismo , Metalotioneína/análise , Espectrometria de Massas/métodos , Sítios de Ligação , Cisteína/metabolismo , Cisteína/química , Cisteína/análise , Sequência de Aminoácidos , Metalotioneína 3 , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , Coelhos
3.
J Phys Chem Lett ; 15(26): 6805-6811, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38913548

RESUMO

Carbon nanohoops are promising precursors for the synthesis of nanotubes, whose structural dynamics are not well understood. Here, we investigate the conformational landscape and energetics of cycloparaphenylenes (CPPs), a methylene-bridged CPP and a carbon nanobelt. These nanohoops can form host-guest complexes with other rings, and understanding their structure is crucial for predicting their properties and identifying potential applications. We used a combination of ion mobility, tandem mass spectrometry, and density functional theory to characterize the nanohoops and their ring-in-ring complexes, following the energetics and conformations of their disassembly from intact complexes to fragment ions. Our results show structural integrity of the nanohoops and host-guest complexes. They also reveal interesting trends in size, packing density, stability, and structure between [6]CPP, the methylene-bridged CPP, and the carbon nanobelt as guests in ring-in-ring complexes. Taken together, our work illustrates how mass spectrometry data can help to unravel the rules that govern the formation of carbon nanohoop assemblies.

4.
Anal Chem ; 96(23): 9390-9398, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38812282

RESUMO

Ion mobility mass spectrometry (IM-MS) measures the mass, size, and shape of ions in the same experiment, and structural information is provided via collision cross-section (CCS) values. The majority of commercially available IM-MS instrumentation relies on the use of CCS calibrants, and here, we present data from a family of poly(l-lysine) dendrimers and explore their suitability for this purpose. In order to test these compounds, we employed three different IM-MS platforms (Agilent 6560 IM-QToF, Waters Synapt G2, and a home-built variable temperature drift tube IM-MS) and used them to investigate six different generations of dendrimers in two buffer gases (helium and nitrogen). Each molecule gives a highly discrete CCS distribution suggestive of single conformers for each m/z value. The DTCCSN2 values of this series of molecules (molecular weight: 330-16,214 Da) range from 182 to 2941 Å2, which spans the CCS range that would be found by many synthetic molecules including supramolecular compounds and many biopolymers. The CCS values for each charge state were highly reproducible in day-to-day analysis on each instrument, although we found small variations in the absolute CCS values between instruments. The rigidity of each dendrimer was probed using collisionally activated and high-temperature IM-MS experiments, where no evidence for a significant CCS change ensued. Taken together, this data indicates that these polymers are candidates for CCS calibration and could also help to reconcile differences found in CCS measurements on different instrument geometries.


Assuntos
Dendrímeros , Espectrometria de Mobilidade Iônica , Polilisina , Dendrímeros/química , Polilisina/química , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Conformação Molecular
5.
Biochem J ; 481(11): 669-682, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38713013

RESUMO

The fundamental biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (Ncap), its use in diagnostic assays and its potential application as a vaccine component have received considerable attention since the outbreak of the Covid19 pandemic in late 2019. Here we report the scalable expression and purification of soluble, immunologically active, SARS-CoV-2 Ncap in Escherichia coli. Codon-optimised synthetic genes encoding the original Ncap sequence and four common variants with an N-terminal 6His affinity tag (sequence MHHHHHHG) were cloned into an inducible expression vector carrying a regulated bacteriophage T5 synthetic promoter controlled by lac operator binding sites. The constructs were used to express Ncap proteins and protocols developed which allow efficient production of purified Ncap with yields of over 200 mg per litre of culture media. These proteins were deployed in ELISA assays to allow comparison of their responses to human sera. Our results suggest that there was no detectable difference between the 6His-tagged and untagged original Ncap proteins but there may be a slight loss of sensitivity of sera to other Ncap isolates.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Escherichia coli , SARS-CoV-2 , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/biossíntese , Proteínas do Nucleocapsídeo de Coronavírus/isolamento & purificação , Proteínas do Nucleocapsídeo de Coronavírus/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Humanos , COVID-19/virologia , Fosfoproteínas/genética , Fosfoproteínas/isolamento & purificação , Fosfoproteínas/metabolismo
6.
Chemistry ; 30(37): e202400432, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38662614

RESUMO

In the design of dynamic supramolecular systems used in molecular machines, it is important to understand the binding preferences between the macrocycle and stations along the thread. Here, we apply 1H NMR spectroscopy to investigate the relative stabilities of a series of linear alkylammonium templated pseudorotaxanes with the general formula [H2NRR'][Cr7CoF8(O2CCH2 tBu)16] by exchanging the cation in solution. Our results show that the pseudorotaxanes are able to exchange threads via a dissociative mechanism. The position of equilibrium is dependent upon the ammonium cation and solvent used. Short chain primary ammonium cations are shown to be far less favourable macrocycle stations than secondary ammonium cations. Collision-induced dissociation mass spectrometry (CID-MS) has been used to look at disassembly of the pseudorotaxanes in a solvent-free environment and stability trends compared to those in acetone-d6. The energy needed to induce 50 % of the precursor ion loss (E50) is used and shows a similar trend to the equilibria measured by NMR. The relative stabilities of these hybrid inorganic-organic pseudo-rotaxanes are different to those of host-guest compounds involving crown ethers and this may be valuable for the design of molecular machines.

7.
J Am Chem Soc ; 146(13): 8800-8819, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38498971

RESUMO

Understanding the composition, structure and stability of larger synthetic molecules is crucial for their design, yet currently the analytical tools commonly used do not always provide this information. In this perspective, we show how ion mobility mass spectrometry (IM-MS), in combination with tandem mass spectrometry, complementary techniques and computational methods, can be used to structurally characterize synthetic molecules, make and predict new complexes, monitor disassembly processes and determine stability. Using IM-MS, we present an experimental and computational framework for the analysis and design of complex molecular architectures such as (metallo)supramolecular cages, nanoclusters, interlocked molecules, rotaxanes, dendrimers, polymers and host-guest complexes.

8.
Chem Res Toxicol ; 36(12): 1921-1929, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37983188

RESUMO

Human exposure to DNA alkylating agents is poorly characterized, partly because only a limited range of specific alkyl DNA adducts have been quantified. The human DNA repair protein, O6-methylguanine O6-methyltransferase (MGMT), irreversibly transfers the alkyl group from DNA O6-alkylguanines (O6-alkGs) to an acceptor cysteine, allowing the simultaneous detection of multiple O6-alkG modifications in DNA by mass spectrometric analysis of the MGMT active site peptide (ASP). Recombinant MGMT was incubated with oligodeoxyribonucleotides (ODNs) containing different O6-alkGs, Temozolomide-methylated calf thymus DNA (Me-CT-DNA), or human colorectal DNA of known O6-MethylG (O6-MeG) levels. It was digested with trypsin, and ASPs were detected and quantified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. ASPs containing S-methyl, S-ethyl, S-propyl, S-hydroxyethyl, S-carboxymethyl, S-benzyl, and S-pyridyloxobutyl cysteine groups were detected by incubating MGMT with ODNs containing the corresponding O6-alkGs. The LOQ of ASPs containing S-methylcysteine detected after MGMT incubation with Me-CT-DNA was <0.05 pmol O6-MeG per mg CT-DNA. Incubation of MGMT with human colorectal DNA produced ASPs containing S-methylcysteine at levels that correlated with those of O6-MeG determined previously by HPLC-radioimmunoassay (r2 = 0.74; p = 0.014). O6-CMG, a putative O6-hydroxyethylG adduct, and other potential unidentified MGMT substrates were also detected in human DNA samples. This novel approach to the identification and quantitation of O6-alkGs in human DNA has revealed the existence of a human DNA alkyl adductome that remains to be fully characterized. The methodology establishes a platform for characterizing the human DNA O6-alkG adductome and, given the mutagenic potential of O6-alkGs, can provide mechanistic information about cancer pathogenesis.


Assuntos
Neoplasias Colorretais , O(6)-Metilguanina-DNA Metiltransferase , Humanos , Domínio Catalítico , Cisteína , DNA/química , Reparo do DNA , Espectrometria de Massas , O(6)-Metilguanina-DNA Metiltransferase/genética , Oligodesoxirribonucleotídeos/química , Peptídeos
9.
Sci Rep ; 13(1): 15155, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704681

RESUMO

Sensitisation to the lipid transfer protein Pru p 3 is associated with severe allergic reactions to peach, the proteins stability being thought to play a role in its allergenicity. Lipid binding increases susceptibility of Pru p 3 to digestion and so the impact of bile salts on the in vitro gastrointestinal digestibility of Pru p 3 was investigated and digestion products mapped by SDS-PAGE and mass spectrometry. Bile salts enhanced the digestibility of Pru p 3 resulting in an ensemble of around 100 peptides spanning the protein's sequence which were linked by disulphide bonds into structures of ~ 5-6 kDa. IgE binding studies with a serum panel from peach allergic subjects showed digestion reduced, but did not abolish, the IgE reactivity of Pru p 3. These data show the importance of including bile salts in vitro digestion systems and emphasise the need to profile of digestion in a manner that allows identification of immunologically relevant disulphide-linked peptide aggregates.


Assuntos
Alérgenos , Prunus persica , Humanos , Proteólise , Ácidos e Sais Biliares , Dissulfetos , Imunoglobulina E
10.
Chemistry ; 29(71): e202302497, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37733973

RESUMO

Multinuclear, self-assembled lanthanide complexes present clear opportunities as sensors and imaging agents. Despite the widely acknowledged potential of this class of supramolecule, synthetic and characterization challenges continue to limit systematic studies into their self-assembly restricting the number and variety of lanthanide architectures reported relative to their transition metal counterparts. Here we present the first study evaluating the effect of ligand backbone symmetry on multinuclear lanthanide complex self-assembly. Replacement of a symmetric ethylene linker with an unsymmetric amide at the center of a homoditopic ligand governs formation of an unusual Ln6 L6 complex with coordinatively unsaturated metal centers. The choice of triflate as a counterion, and the effect of ionic radii are shown to be critical for formation of the Ln6 L6 complex. The atypical Ln6 L6 architecture is characterized using a combination of mass spectrometry, luminescence, DOSY NMR and EPR spectroscopy measurements. Luminescence experiments support clear differences between comparable Eu6 L6 and Eu2 L3 complexes, with relatively short luminescent lifetimes and low quantum yields observed for the Eu6 L6 structure indicative of non-radiative decay processes. Synthesis of the Gd6 L6 analogue allows three distinct Gd⋯Gd distance measurements to be extracted using homo-RIDME EPR experiments.

11.
Anal Chem ; 95(29): 10966-10974, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37440218

RESUMO

Mammalian zinc metallothionein-3 (Zn7MT3) plays an important role in protecting against copper toxicity by scavenging free Cu(II) ions or removing Cu(II) bound to ß-amyloid and α-synuclein. While previous studies reported that Zn7MT3 reacts with Cu(II) ions to form Cu(I)4Zn(II)4MT3ox containing two disulfides (ox), the precise localization of the metal ions and disulfides remained unclear. Here, we undertook comprehensive structural characterization of the metal-protein complexes formed by the reaction between Zn7MT3 and Cu(II) ions using native ion mobility mass spectrometry (IM-MS). The complex formation mechanism was found to involve the disassembly of Zn3S9 and Zn4S11 clusters from Zn7MT3 and reassembly into Cu(I)xZn(II)yMT3ox complexes rather than simply Zn(II)-to-Cu(I) exchange. At neutral pH, the ß-domain was shown to be capable of binding up to six Cu(I) ions to form Cu(I)6Zn(II)4MT3ox, although the most predominant species was the Cu(I)4Zn(II)4MT3ox complex. Under acidic conditions, four Zn(II) ions dissociate, but the Cu(I)4-thiolate cluster remains stable, highlighting the MT3 role as a Cu(II) scavenger even at lower than the cytosolic pH. IM-derived collision cross sections (CCS) reveal that Cu(I)-to-Zn(II) swap in Zn7MT3 with concomitant disulfide formation induces structural compaction and a decrease in conformational heterogeneity. Collision-induced unfolding (CIU) experiments estimated that the native-like folded Cu(I)4Zn(II)4MT3ox conformation is more stable than Zn7MT3. Native top-down MS demonstrated that the Cu(I) ions are exclusively bound to the ß-domain in the Cu(I)4Zn(II)4MT3ox complex as well as the two disulfides, serving as a steric constraint for the Cu(I)4-thiolate cluster. In conclusion, this study enhances our comprehension of the structure, stability, and dynamics of Cu(I)xZn(II)yMT3ox complexes.


Assuntos
Complexos de Coordenação , Metalotioneína 3 , Animais , Cobre/química , Metalotioneína/química , Espectrometria de Massas , Zinco/química , Complexos de Coordenação/química , Dissulfetos , Mamíferos/metabolismo
12.
Anal Bioanal Chem ; 415(18): 4209-4220, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37014373

RESUMO

MS SPIDOC is a novel sample delivery system designed for single (isolated) particle imaging at X-ray Free-Electron Lasers that is adaptable towards most large-scale facility beamlines. Biological samples can range from small proteins to MDa particles. Following nano-electrospray ionization, ionic samples can be m/z-filtered and structurally separated before being oriented at the interaction zone. Here, we present the simulation package developed alongside this prototype. The first part describes how the front-to-end ion trajectory simulations have been conducted. Highlighted is a quadrant lens; a simple but efficient device that steers the ion beam within the vicinity of the strong DC orientation field in the interaction zone to ensure spatial overlap with the X-rays. The second part focuses on protein orientation and discusses its potential with respect to diffractive imaging methods. Last, coherent diffractive imaging of prototypical T = 1 and T = 3 norovirus capsids is shown. We use realistic experimental parameters from the SPB/SFX instrument at the European XFEL to demonstrate that low-resolution diffractive imaging data (q < 0.3 nm-1) can be collected with only a few X-ray pulses. Such low-resolution data are sufficient to distinguish between both symmetries of the capsids, allowing to probe low abundant species in a beam if MS SPIDOC is used as sample delivery.


Assuntos
Capsídeo , Elétrons , Simulação por Computador , Síncrotrons , Raios X
13.
Chem Commun (Camb) ; 59(30): 4471-4474, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36960761

RESUMO

Ion mobility-mass spectrometry (IM-MS) unraveled different conformational stability in Zn4-7-metallothionein-2. We introduced a new molecular dynamics simulation approach that permitted the exploration of all of the conformational space confirming the experimental data, and revealed that not only the Zn-S bonds but also the α-ß domain interactions modulate protein unfolding.


Assuntos
Simulação de Dinâmica Molecular , Zinco , Zinco/química , Metalotioneína/química , Metalotioneína/metabolismo , Conformação Proteica , Espectrometria de Massas
14.
Chem Rev ; 123(6): 2902-2949, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36827511

RESUMO

The investigation of macromolecular biomolecules with ion mobility mass spectrometry (IM-MS) techniques has provided substantial insights into the field of structural biology over the past two decades. An IM-MS workflow applied to a given target analyte provides mass, charge, and conformation, and all three of these can be used to discern structural information. While mass and charge are determined in mass spectrometry (MS), it is the addition of ion mobility that enables the separation of isomeric and isobaric ions and the direct elucidation of conformation, which has reaped huge benefits for structural biology. In this review, where we focus on the analysis of proteins and their complexes, we outline the typical features of an IM-MS experiment from the preparation of samples, the creation of ions, and their separation in different mobility and mass spectrometers. We describe the interpretation of ion mobility data in terms of protein conformation and how the data can be compared with data from other sources with the use of computational tools. The benefit of coupling mobility analysis to activation via collisions with gas or surfaces or photons photoactivation is detailed with reference to recent examples. And finally, we focus on insights afforded by IM-MS experiments when applied to the study of conformationally dynamic and intrinsically disordered proteins.


Assuntos
Biologia , Proteínas , Espectrometria de Massas/métodos , Proteínas/química , Conformação Proteica , Íons/análise , Íons/química
15.
Inorg Chem ; 62(6): 2672-2679, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36716284

RESUMO

Following electrospray ionization, it is common for analytes to enter the gas phase accompanied by a charge-carrying ion, and in most cases, this addition is required to enable detection in the mass spectrometer. These small charge carriers may not be influential in solution but can markedly tune the analyte properties in the gas phase. Therefore, measuring their relative influence on the target molecule can assist our understanding of the structure and stability of the analyte. As the formed adducts are usually distinguishable by their mass, differences in the behavior of the analyte resulting from these added species (e.g., structure, stability, and conformational dynamics) can be easily extracted. Here, we use ion mobility mass spectrometry, supported by density functional theory, to investigate how charge carriers (H+, Na+, K+, and Cs+) as well as water influence the disassembly, stability, and conformational landscape of the homometallic ring [Cr8F8(O2CtBu)16] and the heterometallic rotaxanes [NH2RR'][Cr7MF8(O2CtBu)16], where M = MnII, FeII, CoII, NiII, CuII, ZnII, and CdII. The results yield new insights on their disassembly mechanisms and support previously reported trends in cavity size and transition metal properties, demonstrating the potential of adduct ion studies for characterizing metallosupramolecular complexes in general.

16.
Clin Chem Lab Med ; 61(2): 302-310, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36395058

RESUMO

OBJECTIVES: During 2020, the UK's Department of Health and Social Care (DHSC) established the Moonshot programme to fund various diagnostic approaches for the detection of SARS-CoV-2, the pathogen behind the COVID-19 pandemic. Mass spectrometry was one of the technologies proposed to increase testing capacity. METHODS: Moonshot funded a multi-phase development programme, bringing together experts from academia, industry and the NHS to develop a state-of-the-art targeted protein assay utilising enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS) to capture and detect low levels of tryptic peptides derived from SARS-CoV-2 virus. The assay relies on detection of target peptides, ADETQALPQRK (ADE) and AYNVTQAFGR (AYN), derived from the nucleocapsid protein of SARS-CoV-2, measurement of which allowed the specific, sensitive, and robust detection of the virus from nasopharyngeal (NP) swabs. The diagnostic sensitivity and specificity of LC-MS/MS was compared with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) via a prospective study. RESULTS: Analysis of NP swabs (n=361) with a median RT-qPCR quantification cycle (Cq) of 27 (range 16.7-39.1) demonstrated diagnostic sensitivity of 92.4% (87.4-95.5), specificity of 97.4% (94.0-98.9) and near total concordance with RT-qPCR (Cohen's Kappa 0.90). Excluding Cq>32 samples, sensitivity was 97.9% (94.1-99.3), specificity 97.4% (94.0-98.9) and Cohen's Kappa 0.95. CONCLUSIONS: This unique collaboration between academia, industry and the NHS enabled development, translation, and validation of a SARS-CoV-2 method in NP swabs to be achieved in 5 months. This pilot provides a model and pipeline for future accelerated development and implementation of LC-MS/MS protein/peptide assays into the routine clinical laboratory.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , COVID-19/diagnóstico , Teste para COVID-19 , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Estudos Prospectivos , Técnicas de Laboratório Clínico/métodos , Sensibilidade e Especificidade , Peptídeos
17.
J Am Chem Soc ; 144(49): 22528-22539, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36459680

RESUMO

Understanding the fundamental reactivity of polymetallic complexes is challenging due to the complexity of their structures with many possible bond breaking and forming processes. Here, we apply ion mobility mass spectrometry coupled with density functional theory to investigate the disassembly mechanisms and energetics of a family of heterometallic rings and rotaxanes with the general formula [NH2RR'][Cr7MF8(O2CtBu)16] with M = MnII, FeII, CoII, NiII, CuII, ZnII, CdII. Our results show that their stability can be tuned both by altering the d-metal composition in the macrocycle and by the end groups of the secondary ammonium cation [NH2RR']+. Ion mobility probes the conformational landscape of the disassembly process from intact complex to structurally distinct isobaric fragments, providing unique insights to how a given divalent metal tunes the structural dynamics.


Assuntos
Rotaxanos , Metais/química , Conformação Molecular , Cátions Bivalentes
18.
JACS Au ; 2(9): 2013-2022, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36186554

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, and identification of robust biomarkers to complement clinical diagnosis will accelerate treatment options. Here, we demonstrate the use of direct infusion of sebum from skin swabs using paper spray ionization coupled with ion mobility mass spectrometry (PS-IM-MS) to determine the regulation of molecular classes of lipids in sebum that are diagnostic of PD. A PS-IM-MS method for sebum samples that takes 3 min per swab was developed and optimized. The method was applied to skin swabs collected from 150 people and elucidates ∼4200 features from each subject, which were independently analyzed. The data included high molecular weight lipids (>600 Da) that differ significantly in the sebum of people with PD. Putative metabolite annotations of several lipid classes, predominantly triglycerides and larger acyl glycerides, were obtained using accurate mass, tandem mass spectrometry, and collision cross section measurements.

19.
PLoS One ; 17(9): e0274967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36137157

RESUMO

BACKGROUND: The COVID-19 pandemic is likely to represent an ongoing global health issue given the potential for new variants, vaccine escape and the low likelihood of eliminating all reservoirs of the disease. Whilst diagnostic testing has progressed at a fast pace, the metabolic drivers of outcomes-and whether markers can be found in different biofluids-are not well understood. Recent research has shown that serum metabolomics has potential for prognosis of disease progression. In a hospital setting, collection of saliva samples is more convenient for both staff and patients, and therefore offers an alternative sampling matrix to serum. METHODS: Saliva samples were collected from hospitalised patients with clinical suspicion of COVID-19, alongside clinical metadata. COVID-19 diagnosis was confirmed using RT-PCR testing, and COVID-19 severity was classified using clinical descriptors (respiratory rate, peripheral oxygen saturation score and C-reactive protein levels). Metabolites were extracted and analysed using high resolution liquid chromatography-mass spectrometry, and the resulting peak area matrix was analysed using multivariate techniques. RESULTS: Positive percent agreement of 1.00 between a partial least squares-discriminant analysis metabolomics model employing a panel of 6 features (5 of which were amino acids, one that could be identified by formula only) and the clinical diagnosis of COVID-19 severity was achieved. The negative percent agreement with the clinical severity diagnosis was also 1.00, leading to an area under receiver operating characteristics curve of 1.00 for the panel of features identified. CONCLUSIONS: In this exploratory work, we found that saliva metabolomics and in particular amino acids can be capable of separating high severity COVID-19 patients from low severity COVID-19 patients. This expands the atlas of COVID-19 metabolic dysregulation and could in future offer the basis of a quick and non-invasive means of sampling patients, intended to supplement existing clinical tests, with the goal of offering timely treatment to patients with potentially poor outcomes.


Assuntos
COVID-19 , Aminoácidos/metabolismo , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , COVID-19/diagnóstico , Teste para COVID-19 , Cromatografia Líquida/métodos , Humanos , Espectrometria de Massas/métodos , Metabolômica/métodos , Pandemias , Saliva/metabolismo
20.
Anal Chem ; 94(35): 12248-12255, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36001095

RESUMO

The gas phase is an idealized laboratory for the study of protein structure, from which it is possible to examine stable and transient forms of mass-selected ions in the absence of bulk solvent. With ion mobility-mass spectrometry (IM-MS) apparatus built to operate at both cryogenic and elevated temperatures, we have examined conformational transitions that occur to the monomeric proteins: ubiquitin, lysozyme, and α-synuclein as a function of temperature and in source activation. We rationalize the experimental observations with a temperature-dependent framework model and comparison to known conformers. Data from ubiquitin show unfolding transitions that proceed through diverse and highly elongated intermediate states, which converge to more compact structures. These findings contrast with data obtained from lysozyme─a protein where (un)-folding plasticity is restricted by four disulfide linkages, although this is alleviated in its reduced form. For structured proteins, collision activation of the protein ions in-source enables subsequent "freezing" or thermal annealing of unfolding intermediates, whereas disordered proteins restructure substantially at 250 K even without activation, indicating that cold denaturation can occur without solvent. These data are presented in the context of a toy model framework that describes the relative occupancy of the available conformational space.


Assuntos
Desdobramento de Proteína , Proteínas , Íons/química , Espectrometria de Massas/métodos , Conformação Proteica , Proteínas/química , Solventes , Temperatura , Ubiquitina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA