Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Med ; 178: 108691, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905894

RESUMO

BACKGROUND AND OBJECTIVES: This study aims to develop and evaluate NeuNN, a system based on convolutional neural networks (CNN) and generative adversarial networks (GAN) for the automatic identification of normal neutrophils and those containing several types of inclusions or showing hypogranulation. METHODS: From peripheral blood smears, a set of 5605 digital images was obtained with neutrophils belonging to seven categories: Normal neutrophils (NEU), Hypogranulated (HYP) or containing cryoglobulins (CRY), Döhle bodies (DB), Howell-Jolly body-like inclusions (HJBLI), Green-blue inclusions of death (GBI) and phagocytosed bacteria (BAC). The dataset utilized in this study has been made publicly available. The class of GBI was augmented using synthetic images generated by GAN. The NeuNN classification model is based on an EfficientNet-B7 architecture trained from scratch. RESULTS: NeuNN achieved an overall performance of 94.3% accuracy on the test data set. Performance metrics, including sensitivity, specificity, precision, F1-Score, Jaccard index, and Matthews correlation coefficient indicated overall values of 94%, 99.1%, 94.3%, 94.3%, 89.6%, and 93.6%, respectively. CONCLUSIONS: The proposed approach, combining data augmentation and classification techniques, allows for automated identification of morphological findings in neutrophils, such us inclusions or hypogranulation. The system can be used as a support tool for clinical pathologists to detect these specific abnormalities with clinical relevance.


Assuntos
Aprendizado Profundo , Neutrófilos , Humanos , Citoplasma/metabolismo , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
2.
Comput Methods Programs Biomed ; 240: 107629, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37301181

RESUMO

BACKGROUND AND OBJECTIVES: Combining knowledge of clinical pathologists and deep learning models is a growing trend in morphological analysis of cells circulating in blood to add objectivity, accuracy, and speed in diagnosing hematological and non-hematological diseases. However, the variability in staining protocols across different laboratories can affect the color of images and performance of automatic recognition models. The objective of this work is to develop, train and evaluate a new system for the normalization of color staining of peripheral blood cell images, so that it transforms images from different centers to map the color staining of a reference center (RC) while preserving the structural morphological features. METHODS: The system has two modules, GAN1 and GAN2. GAN1 uses the PIX2PIX technique to fade original color images to an adaptive gray, while GAN2 transforms them into RGB normalized images. Both GANs have a similar structure, where the generator is a U-NET convolutional neural network with ResNet and the discriminator is a classifier with ResNet34 structure. Digitally stained images were evaluated using GAN metrics and histograms to assess the ability to modify color without altering cell morphology. The system was also evaluated as a pre-processing tool before cells undergo a classification process. For this purpose, a CNN classifier was designed for three classes: abnormal lymphocytes, blasts and reactive lymphocytes. RESULTS: Training of all GANs and the classifier was performed using RC images, while evaluations were conducted using images from four other centers. Classification tests were performed before and after applying the stain normalization system. The overall accuracy reached a similar value around 96% in both cases for the RC images, indicating the neutrality of the normalization model for the reference images. On the contrary, it was a significant improvement in the classification performance when applying the stain normalization to the other centers. Reactive lymphocytes were the most sensitive to stain normalization, with true positive rates (TPR) increasing from 46.3% - 66% for the original images to 81.2% - 97.2% after digital staining. Abnormal lymphocytes TPR ranged from 31.9% - 95.7% with original images to 83% - 100% with digitally stained images. Blast class showed TPR ranges of 90.3% - 94.4% and 94.4% - 100%, for original and stained images, respectively. CONCLUSIONS: The proposed GAN-based normalization staining approach improves the performance of classifiers with multicenter data sets by generating digitally stained images with a quality similar to the original images and adaptability to a reference staining standard. The system requires low computation cost and can help improve the performance of automatic recognition models in clinical settings.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Coloração e Rotulagem , Células Sanguíneas , Leucócitos
3.
Comput Methods Programs Biomed ; 229: 107314, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565666

RESUMO

BACKGROUND AND OBJECTIVES: Visual analysis of cell morphology has an important role in the diagnosis of hematological diseases. Morphological cell recognition is a challenge that requires experience and in-depth review by clinical pathologists. Within the new trend of introducing computer-aided diagnostic tools in laboratory medicine, models based on deep learning are being developed for the automatic identification of different types of cells in peripheral blood. In general, well-annotated large image sets are needed to train the models to reach a desired classification performance. This is especially relevant when it comes to discerning between cell images in which morphological differences are subtle and when it comes to low prevalent diseases with the consequent difficulty in collecting cell images. The objective of this work is to develop, train and validate SyntheticCellGAN (SCG), a new system for the automatic generation of artificial images of white blood cells, maintaining morphological characteristics very close to real cells found in practice in clinical laboratories. METHODS: SCG is designed with two sequential generative adversarial networks. First, a Wasserstein structure is used to transform random noise vectors into low resolution images of basic mononuclear cells. Second, the concept of image-to-image translation is used to build specific models that transform the basic images into high-resolution final images with the realistic morphology of each cell type target: 1) the five groups of normal leukocytes (lymphocytes, monocytes, eosinophils, neutrophils and basophils); 2) atypical promyelocytes and hairy cells, which are two relevant cell types of complex morphology with low abundance in blood smears. RESULTS: The images of the SCG system are evaluated with four experimental tests. In the first test we evaluated the generated images with quantitative metrics for GANs. In the second test, morphological verification of the artificial images is performed by expert clinical pathologists with 100% accuracy. In the third test, two classifiers based on convolutional neural networks (CNN) previously trained with images of real cells are used. Two sets of artificial images of the SCG system are classified with an accuracy of 95.36% and 94%, respectively. In the fourth test, three CNN classifiers are trained with artificial images of the SCG system. Real cells are identified with an accuracy ranging from 87.7% to 100%. CONCLUSIONS: The SCG system has proven effective in creating images of all normal leukocytes and two low-prevalence cell classes associated with diseases such as acute promyelocyte leukemia and hairy cell leukemia. Once trained, the system requires low computational cost and can help augment high-quality image datasets to improve automatic recognition model training for clinical laboratory practice.


Assuntos
Leucócitos , Redes Neurais de Computação , Linfócitos , Monócitos , Eosinófilos , Processamento de Imagem Assistida por Computador/métodos
4.
Bioengineering (Basel) ; 9(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35621507

RESUMO

Laboratory medicine plays a fundamental role in the detection, diagnosis and management of COVID-19 infection. Recent observations of the morphology of cells circulating in blood found the presence of particular reactive lymphocytes (COVID-19 RL) in some of the infected patients and demonstrated that it was an indicator of a better prognosis of the disease. Visual morphological analysis is time consuming, requires smear review by expert clinical pathologists, and is prone to subjectivity. This paper presents a convolutional neural network system designed for automatic recognition of COVID-19 RL. It is based on the Xception71 structure and is trained using images of blood cells from real infected patients. An experimental study is carried out with a group of 92 individuals. The input for the system is a set of images selected by the clinical pathologist from the blood smear of a patient. The output is the prediction whether the patient belongs to the group associated with better prognosis of the disease. A threshold is obtained for the classification system to predict that the smear belongs to this group. With this threshold, the experimental test shows excellent performance metrics: 98.3% sensitivity and precision, 97.1% specificity, and 97.8% accuracy. The system does not require costly calculations and can potentially be integrated into clinical practice to assist clinical pathologists in a more objective smear review for early prognosis.

5.
J Clin Pathol ; 75(2): 104-111, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33310786

RESUMO

AIMS: Atypical lymphocytes circulating in blood have been reported in COVID-19 patients. This study aims to (1) analyse if patients with reactive lymphocytes (COVID-19 RL) show clinical or biological characteristics related to outcome; (2) develop an automatic system to recognise them in an objective way and (3) study their immunophenotype. METHODS: Clinical and laboratory findings in 36 COVID-19 patients were compared between those showing COVID-19 RL in blood (18) and those without (18). Blood samples were analysed in Advia2120i and stained with May Grünwald-Giemsa. Digital images were acquired in CellaVisionDM96. Convolutional neural networks (CNNs) were used to accurately recognise COVID-19 RL. Immunophenotypic study was performed throughflow cytometry. RESULTS: Neutrophils, D-dimer, procalcitonin, glomerular filtration rate and total protein values were higher in patients without COVID-19 RL (p<0.05) and four of these patients died. Haemoglobin and lymphocyte counts were higher (p<0.02) and no patients died in the group showing COVID-19 RL. COVID-19 RL showed a distinct deep blue cytoplasm with nucleus mostly in eccentric position. Through two sequential CNNs, they were automatically distinguished from normal lymphocytes and classical RL with sensitivity, specificity and overall accuracy values of 90.5%, 99.4% and 98.7%, respectively. Immunophenotypic analysis revealed COVID-19 RL are mostly activated effector memory CD4 and CD8 T cells. CONCLUSION: We found that COVID-19 RL are related to a better evolution and prognosis. They can be detected by morphology in the smear review, being the computerised approach proposed useful to enhance a more objective recognition. Their presence suggests an abundant production of virus-specific T cells, thus explaining the better outcome of patients showing these cells circulating in blood.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , COVID-19/diagnóstico , COVID-19/imunologia , Células T de Memória/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/sangue , COVID-19/mortalidade , Estudos de Casos e Controles , Regras de Decisão Clínica , Progressão da Doença , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Masculino , Células T de Memória/imunologia , Pessoa de Meia-Idade , Redes Neurais de Computação , Prognóstico , Sensibilidade e Especificidade , Espanha/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA