Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Atmos Environ X ; 313: 1-14, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37840812

RESUMO

Quantifying atmospheric loadings of total phosphorus (TP) to freshwater environments is essential to improve understanding of its fate and transport, and to mitigate the effects of excessive levels in freshwater ecosystems. To date, atmospheric deposition of TP in the U.S. is poorly characterized due to the lack of long-term deposition observations. Here, we integrate several historical datasets to develop an estimate of dry and wet deposition to the Great Lakes region. For dry deposition, we use TP concentrations in fine particulate matter (PM2.5) samples from fourteen land-based IMPROVE sites (2013-2020) upwind of the Great Lakes to provide new fine particle phosphorus dry deposition estimates. For wet deposition, we use TP concentrations in wet-only precipitation samples collected at eleven land-based sites (2001-2009) in the Great Lakes region. For both wet and dry deposition, a seasonal cycle is evident with higher concentrations in warmer and wetter months when compared to colder months. Additionally, there is an increasing gradient from north to south in wet deposition, likely driven by both higher precipitation and increased emissions near southern sites. Despite different sampling time periods, these updated observations can provide further constraints on the TP loadings to each of the five Great Lakes. We estimate annual deposition of TP to Lakes Superior, Michigan, Huron, Erie and Ontario at 526, 702, 495, 212, and 185 MTA per year, which is lower than prior estimates for Lakes Superior, Erie and Ontario, comparable for Lake Huron, and about two times greater for Lake Michigan. When considering only the contribution of fine particulate PM to the dry deposition, wet deposition dominated over dry at all lakes except for Lake Huron. However, prior global estimates suggest greater contributions from larger particles (PM10 and PM100), yet observations to validate these estimates over the Great Lakes are not available. Our findings indicate that dry deposition of a range of particle sizes are needed to constrain the total atmospheric deposition of TP over the Great Lakes.

2.
Artigo em Inglês | MEDLINE | ID: mdl-28208603

RESUMO

This paper describes the development of a new artificial turf surrogate surface (ATSS) sampler for use in the measurement of mercury (Hg) dry deposition. In contrast to many existing surrogate surface designs, the ATSS utilizes a three-dimensional deposition surface that may more closely mimic the physical structure of many natural surfaces than traditional flat surrogate surface designs (water, filter, greased Mylar film). The ATSS has been designed to overcome several complicating factors that can impact the integrity of samples with other direct measurement approaches by providing a passive system which can be deployed for both short and extended periods of time (days to weeks), and is not contaminated by precipitation and/or invalidated by strong winds. Performance characteristics including collocated precision, in-field procedural and laboratory blanks were evaluated. The results of these performance evaluations included a mean collocated precision of 9%, low blanks (0.8 ng), high extraction efficiency (97%-103%), and a quantitative matrix spike recovery (100%).


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental/instrumentação , Mercúrio/análise , Monitoramento Ambiental/métodos , Propriedades de Superfície
3.
Environ Pollut ; 206: 469-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26277649

RESUMO

Characterization of air pollutant deposition resulting from Athabasca oil sands development is necessary to assess risk to humans and the environment. To investigate this we collected event-based wet deposition during a pilot study in 2010-2012 at the AMS 6 site 30 km from the nearest upgrading facility in Fort McMurray, AB, Canada. Sulfate, nitrate and ammonium deposition was (kg/ha) 1.96, 1.60 and 1.03, respectively. Trace element pollutant deposition ranged from 2 × 10(-5) - 0.79 and exhibited the trend Hg < Se < As < Cd < Pb < Cu < Zn < S. Crustal element deposition ranged from 1.4 × 10(-4) - 0.46 and had the trend: La < Ce < Sr < Mn < Al < Fe < Mg. S, Se and Hg demonstrated highest median enrichment factors (130-2020) suggesting emissions from oil sands development, urban activities and forest fires were deposited. High deposition of the elements Sr, Mn, Fe and Mg which are tracers for soil and crustal dust implies land-clearing, mining and hauling emissions greatly impacted surrounding human settlements and ecosystems.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Campos de Petróleo e Gás/química , Solo/química , Alberta , Poeira/análise , Monitoramento Ambiental , Projetos Piloto
4.
Environ Sci Pollut Res Int ; 21(6): 4032-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23943079

RESUMO

An intensive 1-month atmospheric sampling campaign was conducted concurrently at eight monitoring sites in central Illinois, USA, from June 9 to July 3, 2011 to assess spatial patterns in wet and dry deposition of mercury and other trace elements. Summed wet deposition of mercury ranged from 3.1 to 5.4 µg/m(2) across sites for the total study period, while summed dry deposition of reactive mercury (gaseous oxidized mercury plus particulate bound mercury) ranged from 0.7 to 1.6 µg/m(2), with no statistically significant differences found spatially between northern and southern sites. Ratios of summed wet to summed dry mercury deposition across sites ranged from 2.2 to 4.9 indicating that wet deposition of mercury was dominant during the study period. Volume-weighted mean mercury concentrations in precipitation were found to be significantly higher at northern sites, while precipitation depth was significantly higher at southern sites. These results showed that substantial amounts of mercury deposition, especially wet deposition, occurred during the study period relative to typical annual wet deposition levels. Summed wet deposition of anthropogenic trace elements was much higher, compared to summed dry deposition, for sulfur, selenium, and copper, while at some sites summed dry deposition dominated summed wet deposition for lead and zinc. This study highlights that while wet deposition of Hg was dominant during this spring/summer-season study, Hg dry deposition also contributed an important fraction and should be considered for implementation in future Hg deposition monitoring studies.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Mercúrio/análise , Oligoelementos/análise , Cobre/análise , Illinois , Estações do Ano , Selênio/análise , Análise Espacial , Enxofre/análise , Tempo (Meteorologia)
5.
Sci Total Environ ; 448: 107-19, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23375868

RESUMO

Intra-storm variability and soluble fractionation was explored for summer-time rain events in Steubenville, Ohio to evaluate the physical processes controlling mercury (Hg) in wet deposition in this industrialized region. Comprehensive precipitation sample collection was conducted from July through September 2006 using three different methods to evaluate both soluble and insoluble fractions as well as scavenging and washout properties of Hg and a suite of trace elements. Real-time filtration of event total precipitation revealed that 61±17% (mean±standard deviation) of Hg in wet deposition was in a soluble form. Comparison of total and dissolved element concentrations (solubility fractionation) showed the following order of decreasing solubility: S>Na>Se>Ca>Mg>Hg>As>Mn>V>Cr>Fe>La≈Ce ranging from 95% (S) to 4% (Ce). To examine removal mechanisms occurring during the course of a precipitation event, discrete, sequential sub-event precipitation samples were collected. Results indicated that Hg had lower "scavenging coefficients" (the rate of Hg concentration decrease throughout the events) than the majority of elements analyzed, indicating that either (i) Hg is incorporated into rain via gas phase inclusion or particulate nucleation within cloud, or (ii) Hg is available in the boundary layer for scavenging, even in the latter stages of precipitation. The Hg scavenging coefficient (-0.39) was low compared to S (-0.73), a co-pollutant of Hg. When compared to an upwind, regionally representative site, the scavenging coefficient of Hg for the locally influenced precipitation was 25% lower. This observation suggests that a continuous feed of soluble Hg was the reason for the low scavenging coefficient. Overall, this investigation of Hg wet deposition in Steubenville indicates that the physical and chemical properties of Hg emissions are driving the elevated deposition rates observed near point sources.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Mercúrio/análise , Chuva/química , Neve/química , Movimentos do Ar , Atmosfera/química , Poluentes Ambientais/química , Mercúrio/química , Ohio , Rios
6.
Sci Total Environ ; 448: 84-95, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23010282

RESUMO

Quantifying the local and regional impacts of speciated mercury (Hg) emissions from major urban and industrial areas is critical for understanding Hg transport and cycling in the environment. The Chicago/Gary urban area is one location where Hg emissions from industrial sources are significant and the regional transport of emissions may contribute to elevated ambient Hg concentrations at downwind locations. From July to November 2007, we collected semi-continuous measurements of gaseous elemental Hg (Hg(0)), fine particulate bound Hg (Hgp), and divalent reactive gaseous Hg (RGM) in Chicago, IL and Holland, MI to characterize the impact of Chicago/Gary source emissions on Hg concentrations in southwest Michigan and to improve our overall understanding of speciated Hg transport and deposition. The mean (and median) concentrations of Hg(0), Hgp, and RGM in Chicago were 2.5ng/m(3) (1.9ng/m(3)), 9pg/m(3) (5pg/m(3)), and 17pg/m(3) (6pg/m(3)), respectively. In Holland the mean (and median) concentrations were 1.3ng/m(3) (1.3ng/m(3)), 6pg/m(3) (6pg/m(3)), and 8pg/m(3) (2pg/m(3)), respectively. Cluster analysis of 24-hour HYSPLIT back-trajectories associated with the semi-continuous Hg measurements indicated that southwest transport from Chicago/Gary to Holland occurred during approximately 27% of the study. In Holland, under this transport regime, we observed a five-fold increase in RGM relative to the median concentration of the other transport clusters. We applied the HYSPLIT dispersion model to two case study periods to further quantify the impact of Chicago/Gary sources on southeast Michigan and investigate the role of direct transport and dispersion of speciated Hg emissions. Results suggested that more than 50% of the maximum RGM concentrations observed in Holland during the selected periods could be attributed to direct transport of primary RGM emissions from Chicago/Gary. The remaining RGM fractions are believed to be associated with Hg(0) oxidation during transport over Lake Michigan.


Assuntos
Movimentos do Ar , Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental , Mercúrio/análise , Poluentes Atmosféricos/química , Chicago/epidemiologia , Análise por Conglomerados , Geografia , Illinois , Lagos/química , Mercúrio/química , Michigan , Oxirredução
7.
Sci Total Environ ; 448: 120-31, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23199452

RESUMO

From August 4, 2007 to August 31, 2009, we collected event-based precipitation samples for mercury (Hg) and trace element analyses at four sites in Illinois (IL), USA. The objectives of these measurements were to quantify Hg wet deposition across the state, and to assess the contributions to Hg in precipitation from major local and regional emission sources. Monitoring sites were located, from north to south, in Chicago, Peoria, Nilwood, and Carbondale, IL. Measurements from these four sites demonstrated that a clear spatial gradient in Hg wet deposition was not evident across the state. Each site received>10µgm(-2) of Hg wet deposition annually, and these observed values were comparable to annual Hg wet deposition measurements from other event-based precipitation monitoring sites in source-impacted areas of the Midwestern U.S. We applied the multivariate statistical receptor model, Positive Matrix Factorization (EPA PMF v3.0), to the measured Hg and trace element wet deposition amounts at the four sites. Results suggested that 50% to 74% of total Hg wet deposition at each site could be attributed to coal combustion emissions. The other source signatures identified in the precipitation compositions included cement manufacturing, mixed metal smelting/waste incineration, iron-steel production, and a phosphorus source. We also applied a hybrid receptor model, Quantitative Transport Bias Analysis (QTBA), to the Hg wet deposition datasets to identify the major source regions associated with the measured values. The calculated QTBA probability fields suggested that transport from urban/industrial areas, such as Chicago/Gary, St. Louis, and the Ohio River Valley, resulted in some of the highest estimated event-based Hg wet deposition amounts at the four sites (potential mass transfer of up to 0.32µgm(-2)). The combined application of PMF and QTBA supported the hypothesis that local and regional coal combustion was the largest source of Hg wet deposition in Illinois.


Assuntos
Poluentes Atmosféricos/química , Atmosfera/química , Monitoramento Ambiental , Mercúrio/química , Movimentos do Ar , Poluentes Atmosféricos/análise , Carvão Mineral , Materiais de Construção , Resíduos Perigosos , Illinois , Incineração , Indústrias , Ferro , Mercúrio/análise , Análise Multivariada , Chuva/química , Esgotos , Aço
8.
Environ Pollut ; 161: 261-71, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21745704

RESUMO

Annual and weekly mercury (Hg) concentrations, precipitation depths, and Hg wet deposition in the Great Lakes region were analyzed by using data from 5 monitoring networks in the USA and Canada for a 2002-2008 study period. High-resolution maps of calculated annual data, 7-year mean data, and net interannual change for the study period were prepared to assess spatial patterns. Areas with 7-year mean annual Hg concentrations higher than the 12 ng per liter water-quality criterion were mapped in 4 states. Temporal trends in measured weekly data were determined statistically. Monitoring sites with significant 7-year trends in weekly Hg wet deposition were spatially separated and were not sites with trends in weekly Hg concentration. During 2002-2008, Hg wet deposition was found to be unchanged in the Great Lakes region and its subregions. Any small decreases in Hg concentration apparently were offset by increases in precipitation.


Assuntos
Mercúrio/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Atmosfera/química , Monitoramento Ambiental , Sedimentos Geológicos/química , Great Lakes Region , Lagos/química , Ontário , Quebeque , Tempo (Meteorologia)
9.
Environ Health Perspect ; 110 Suppl 2: 173-81, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11929726

RESUMO

We report on the research conducted by the Community Action Against Asthma (CAAA) in Detroit, Michigan, to evaluate personal and community-level exposures to particulate matter (PM) among children with asthma living in an urban environment. CAAA is a community-based participatory research collaboration among academia, health agencies, and community-based organizations. CAAA investigates the effects of environmental exposures on the residents of Detroit through a participatory process that engages participants from the affected communities in all aspects of the design and conduct of the research; disseminates the results to all parties involved; and uses the research results to design, in collaboration with all partners, interventions to reduce the identified environmental exposures. The CAAA PM exposure assessment includes four seasonal measurement campaigns each year that are conducted for a 2-week duration each season. In each seasonal measurement period, daily ambient measurements of PM2.5 and PM10 (particulate matter with a mass median aerodynamic diameter less than 2.5 microm and 10 microm, respectively) are collected at two elementary schools in the eastside and southwest communities of Detroit. Concurrently, indoor measurements of PM2.5 and PM10 are made at the schools as well as inside the homes of a subset of 20 children with asthma. Daily personal exposure measurements of PM10 are also collected for these 20 children with asthma. Results from the first five seasonal assessment periods reveal that mean personal PM10 (68.4 39.2 microg/m(3)) and indoor home PM10 (52.2 30.6 microg/m(3)) exposures are significantly greater (p < 0.05) than the outdoor PM10 concentrations (25.8 11.8 microg/m(3)). The same was also found for PM2.5 (indoor PM2.5 = 34.4 21.7 microg/m(3); outdoor PM2.5 = 15.6 8.2 microg/m(3)). In addition, significant differences (p < 0.05) in community-level exposure to both PM10 and PM2.5 are observed between the two Detroit communities (southwest PM10 = 28.9 14.4 microg/m(3)), PM2.5 = 17.0 9.3 microg/m(3); eastside PM10 = 23.8 12.1 microg/m(3), PM2.5 = 15.5 9.0 microg/m(3). The increased levels in the southwest Detroit community are likely due to the proximity to heavy industrial pollutant point sources and interstate motorways. Trace element characterization of filter samples collected over the 2-year period will allow a more complete assessment of the PM components. When combined with other project measures, including concurrent seasonal twice-daily peak expiratory flow and forced expiratory volume at 1 sec and daily asthma symptom and medication dairies for 300 children with asthma living in the two Detroit communities, these data will allow not only investigations into the sources of PM in the Detroit airshed with regard to PM exposure assessment but also the role of air pollutants in exacerbation of childhood asthma.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Asma/etiologia , Proteção da Criança , Exposição Ambiental , Adolescente , Poluentes Atmosféricos/análise , Criança , Pré-Escolar , Cidades , Monitoramento Ambiental , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Michigan , Tamanho da Partícula , Testes de Função Respiratória , Estações do Ano , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA