RESUMO
In this work, the recent advances for rapid prototyping in the orthoprosthetic industry are presented. Specifically, the manufacturing process of orthoprosthetic aids are analysed, as thier use is widely extended in orthopedic surgery. These devices are devoted to either correct posture or movement (orthosis) or to substitute a body segment (prosthesis) while maintaining functionality. The manufacturing process is traditionally mainly hand-crafted: The subject's morphology is taken by means of plaster molds, and the manufacture is performed individually, by adjusting the prototype over the subject. This industry has incorporated computer aided design (CAD), computed aided engineering (CAE) and computed aided manufacturing (CAM) tools; however, the true revolution is the result of the application of rapid prototyping technologies (RPT). Techniques such as fused deposition modelling (FDM), selective laser sintering (SLS), laminated object manufacturing (LOM), and 3D printing (3DP) are some examples of the available methodologies in the manufacturing industry that, step by step, are being included in the rehabilitation engineering market-an engineering field with growth and prospects in the coming years. In this work we analyse different methodologies for additive manufacturing along with the principal methods for collecting 3D body shapes and their application in the manufacturing of functional devices for rehabilitation purposes such as splints, ankle-foot orthoses, or arm prostheses.
RESUMO
When designing any rehabilitation, sportswear or exoskeleton device the mechanical behaviour of the body segment must be known, specifically the skin, because an excessive tissue strain may lead to ulceration and bedsores. To date, it is not known if the kinematic variability between subjects have an effect on the skin strain field, and therefore, in the design and manufacturing of rehabilitation products, such as orthoses. Several studies have analysed the skin deformation during human motion, nevertheless, the comparison between the skin strain field in different subjects during normal or pathological gait has not been reported yet. This work presents a comparison of skin strain analysis for different gait patterns to study the differences between people and, specifically, if it is possible to standardize the orthotic design between subjects with the same gait disorder. Moreover, the areas with relatively minimum strain during the ankle-foot motion are compared to improve the design of structural parts of rehabilitation devices. In this case, a validated 3D digital image correlation system has been used for this purpose combined with strain ellipse theory. The results demonstrate variations in the skin strain field between subjects with the same pathology and similarities between subjects with normal gait. However, more studies and experiments are necessaries to validate this hypothesis and also to test it between different gait pathologies.
Assuntos
Marcha/fisiologia , Desenho de Prótese , Reabilitação , Pele/anatomia & histologia , Adulto , Algoritmos , Fenômenos Biomecânicos , Humanos , Masculino , Impressão Tridimensional , Estresse Mecânico , Propriedades de Superfície , Fatores de TempoRESUMO
Hybrid orthoses or rehabilitation exoskeletons have proven to be a powerful tool for subjects with gait disabilities due to their combined use of electromechanical actuation to provide motion and support, and functional electrical stimulation (FES) to contract muscle tissue so as to improve the rehabilitation process. In these devices, each degree of freedom is governed by two actuators. The main issue arises in the design of the two actuation profiles for there to be natural or normative gait motion in which the two actuators are transparent to each other. Hybrid exoskeleton control solutions proposed in the literature have been based on tracking the desired kinematics and applying FES to maintain the desired motion rather than to attain the values expected for physiological movement. This work proposes a muscle-model approach involving inverse dynamics optimization for the design of combined actuation in hybrid orthoses. The FES profile calculated in this way has the neurophysiological meaningfulness for the device to be able to fulfill its rehabilitative purpose. A general scheme is proposed for a hybrid hip-knee-ankle-foot orthosis. The actuation profiles, when muscle tissue is fatigued due to FES actuation are analyzed, and an integrated approach is presented for estimating the actuation profiles so as to overcome muscle peak force reduction during stimulation. The objective is to provide a stimulation profile for each muscle individually that is compatible with the desired kinematics and actuation of the orthosis. The hope is that the results may contribute to the design of subject-specific rehabilitation routines with hybrid exoskeletons, improving the exoskeleton's actuation while maintaining its rehabilitative function.