Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 12(10): e9367, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36254299

RESUMO

Ecological character displacement between the sexes, and sexual selection, integrate into a convergent set of factors that produce sexual variation. Ecologically modulated, sexually mediated variation within and between sexes may be a major contributor to the amount of total variation that selection can act on in species. Threespine stickleback (Gasterosteus aculeatus) display rapid adaptive responses and sexual variation in many phenotypic traits. We examined phenotypic variation in the skull, pectoral and pelvic girdles of threespine stickleback from two freshwater and two coastal marine sites on the Sunshine Coast of British Columbia, Canada, using an approach that avoids a priori assumptions about bimodal patterns of variation. We quantified shape and size of the cranial, pectoral and pelvic regions of sticklebacks in marine and freshwater habitats using 3D geometric morphometrics and an index of sexually mediated variation. We show that the expression of phenotypic variation is structured in part by the effects of both habitat marine vs freshwater and the effects of individual sites within each habitat. Relative size exerts variable influence, and patterns of phenotypic variation associated with sex vary among body regions. This fine-grained quantification of sexually mediated variation in the context of habitat difference and different anatomical structures indicates a complex relationship between genetically inferred sex and environmental factors, demonstrating that the interplay between shared genetic background and sexually mediated, ecologically based selective pressures structures the phenotypic expression of complex traits.

2.
Mol Ecol ; 31(8): 2312-2326, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35152483

RESUMO

Species distribution models (SDMs) are widely used to predict range shifts but could be unreliable under climate change scenarios because they do not account for evolution. The thermal physiology of a species is a key determinant of its range and thus incorporating thermal trait evolution into SDMs might be expected to alter projected ranges. We identified a genetic basis for physiological and behavioural traits that evolve in response to temperature change in natural populations of threespine stickleback (Gasterosteus aculeatus). Using these data, we created geographical range projections using a mechanistic niche area approach under two climate change scenarios. Under both scenarios, trait data were either static ("no evolution" models), allowed to evolve at observed evolutionary rates ("evolution" models) or allowed to evolve at a rate of evolution scaled by the trait variance that is explained by quantitative trait loci (QTL; "scaled evolution" models). We show that incorporating these traits and their evolution substantially altered the projected ranges for a widespread panmictic marine population, with over 7-fold increases in area under climate change projections when traits are allowed to evolve. Evolution-informed SDMs should improve the precision of forecasting range dynamics under climate change, and aid in their application to management and the protection of biodiversity.


Assuntos
Mudança Climática , Smegmamorpha , Animais , Fenótipo , Locos de Características Quantitativas/genética , Smegmamorpha/genética
3.
Genetics ; 217(1): 1-15, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33683369

RESUMO

Epigenetic mechanisms underlying phenotypic change are hypothesized to contribute to population persistence and adaptation in the face of environmental change. To date, few studies have explored the heritability of intergenerationally stable methylation levels in natural populations, and little is known about the relative contribution of cis- and trans-regulatory changes to methylation variation. Here, we explore the heritability of DNA methylation, and conduct methylation quantitative trait loci (meQTLs) analysis to investigate the genetic architecture underlying methylation variation between marine and freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We quantitatively measured genome-wide DNA methylation in fin tissue using reduced representation bisulfite sequencing of F1 and F2 crosses, and their marine and freshwater source populations. We identified cytosines (CpG sites) that exhibited stable methylation levels across generations. We found that additive genetic variance explained an average of 24-35% of the methylation variance, with a number of CpG sites possibly autonomous from genetic control. We also detected both cis- and trans-meQTLs, with only trans-meQTLs overlapping with previously identified genomic regions of high differentiation between marine and freshwater ecotypes. Finally, we identified the genetic architecture underlying two key CpG sites that were differentially methylated between ecotypes. These findings demonstrate a potential role for DNA methylation in facilitating adaptation to divergent environments and improve our understanding of the heritable basis of population epigenomic variation.


Assuntos
Metilação de DNA , Polimorfismo Genético , Locos de Características Quantitativas , Smegmamorpha/genética , Animais , Ilhas de CpG , Ecótipo , Epigenoma , Hibridização Genética , Característica Quantitativa Herdável
4.
Integr Comp Biol ; 55(1): 166-78, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25908668

RESUMO

The tight fit between form and function in organisms suggests the influence of adaptive evolution in biomechanics; however, the prevalence of adaptive traits, the mechanisms by which they arise and the corresponding responses to selection are subjects of extensive debate. We used three-dimensional microcomputed tomography and geometric morphometrics to characterize the structure of phenotypic covariance within the G. aculeatus trophic apparatus and its supporting structures in wild and controlled crosses of fish from two different localities. Our results reveal that while the structure of phenotypic covariance is conserved in marine and freshwater forms, it may be disrupted in the progeny of artificial crosses or during rapid adaptive divergence events. We discuss these results within the context of integrating covariance structure with quantitative genetics, toward establishing predictive links between genes, development, biomechanics, and the environment.


Assuntos
Evolução Biológica , Fenótipo , Smegmamorpha/anatomia & histologia , Smegmamorpha/fisiologia , Animais , Meio Ambiente , Feminino , Imageamento Tridimensional/veterinária , Masculino , Crânio/anatomia & histologia , Crânio/fisiologia , Microtomografia por Raio-X/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA