RESUMO
BACKGROUND: Pegunigalsidase alfa is a PEGylated α-galactosidase A enzyme replacement therapy. BALANCE (NCT02795676) assessed non-inferiority of pegunigalsidase alfa versus agalsidase beta in adults with Fabry disease with an annualised estimated glomerular filtration rate (eGFR) slope more negative than -2 mL/min/1.73 m2/year who had received agalsidase beta for ≥1 year. METHODS: Patients were randomly assigned 2:1 to receive 1 mg/kg pegunigalsidase alfa or agalsidase beta every 2 weeks for 2 years. The primary efficacy analysis assessed non-inferiority based on median annualised eGFR slope differences between treatment arms. RESULTS: Seventy-seven patients received either pegunigalsidase alfa (n=52) or agalsidase beta (n=25). At baseline, mean (range) age was 44 (18-60) years, 47 (61%) patients were male, median eGFR was 74.5 mL/min/1.73 m2 and median (range) eGFR slope was -7.3 (-30.5, 6.3) mL/min/1.73 m2/year. At 2 years, the difference between median eGFR slopes was -0.36 mL/min/1.73 m2/year, meeting the prespecified non-inferiority margin. Minimal changes were observed in lyso-Gb3 concentrations in both treatment arms at 2 years. Proportions of patients experiencing treatment-related adverse events and mild or moderate infusion-related reactions were similar in both groups, yet exposure-adjusted rates were 3.6-fold and 7.8-fold higher, respectively, with agalsidase beta than pegunigalsidase alfa. At the end of the study, neutralising antibodies were detected in 7 out of 47 (15%) pegunigalsidase alfa-treated patients and 6 out of 23 (26%) agalsidase beta-treated patients. There were no deaths. CONCLUSIONS: Based on rate of eGFR decline over 2 years, pegunigalsidase alfa was non-inferior to agalsidase beta. Pegunigalsidase alfa had lower rates of treatment-emergent adverse events and mild or moderate infusion-related reactions. TRIAL REGISTRATION NUMBER: NCT02795676.
RESUMO
BACKGROUND: The mechanistic basis for neurocognitive deficits in central nervous system (CNS) lymphoma and other brain tumors is incompletely understood. We tested the hypothesis that tumor metabolism impairs neurotransmitter pathways and neurocognitive function. METHODS: We performed serial cerebrospinal fluid (CSF) metabolomic analyses using liquid chromatography-electrospray tandem mass spectrometry to evaluate changes in the tumor microenvironment in 14 patients with recurrent CNS lymphoma, focusing on 18 metabolites involved in neurotransmission and bioenergetics. These were paired with serial mini-mental state examination (MMSE) and MRI studies for tumor volumetric analyses. Patients were analyzed in the setting of the phase I trial of lenalidomide/rituximab. Associations were assessed by Pearson and Spearman correlation coefficient. Generalized estimating equation (GEE) models were also established, adjusting for within-subject repeated measures. RESULTS: Of 18 metabolites, elevated CSF lactate correlated most strongly with lower MMSE score (P < 8E-8, ρ = -0.67). High lactate was associated with lower gamma-aminobutyric acid (GABA), higher glutamate/GABA ratio, and dopamine. Conversely, high succinate correlated with higher MMSE scores. Serial analysis demonstrated a reproducible, time-dependent, reciprocal correlation between changes in lactate and GABA concentrations. While high lactate and low GABA correlated with tumor contrast-enhancing volume, they correlated more significantly with lower MMSE scores than tumor volumes. CONCLUSIONS: We provide evidence that lactate production and Warburg metabolism may impact neurotransmitter dysregulation and neurocognition in CNS lymphomas. We identify novel metabolomic biomarkers that may be applied in future studies of neurocognition in CNS lymphomas. Elucidation of mechanistic interactions between lymphoma metabolism, neurotransmitter imbalance, and neurocognition may promote interventions that preserve cognitive function.
Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Linfoma não Hodgkin , Linfoma , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Humanos , Linfoma/tratamento farmacológico , Rituximab , Microambiente TumoralRESUMO
OBJECTIVES: We sought to evaluate the relevance of pediatric dairy fat recommendations for children at risk for nonalcoholic fatty liver disease (NAFLD) by studying the association between dairy fat intake and the amount of liver fat. The effects of dairy fat may be mediated by odd chain fatty acids (OCFA), such as pentadecanoic acid (C15:0), and monomethyl branched chain fatty acids (BCFA), such as iso-heptadecanoic acid (iso-C17:0). Therefore, we also evaluated the association between plasma levels of OCFA and BCFA with the amount of liver fat. METHODS: Observational, cross-sectional, community-based sample of 237 children ages 8 to 17. Dairy fat intake was assessed by 3 24-hour dietary recalls. Plasma fatty acids were measured by gas chromatography-mass spectrometry. Main outcome was hepatic steatosis measured by whole liver magnetic resonance imaging proton density fat fraction (MRI-PDFF). RESULTS: Median dairy fat intake was 10.6âgrams/day (range 0.0--44.5âg/day). Median liver MRI-PDFF was 4.5% (range 0.9%-45.1%). Dairy fat intake was inversely correlated with liver MRI-PDFF (râ=â-0.162; Pâ=â.012). In multivariable log linear regression, plasma C15:0 and iso-C17:0 were inverse predictors of liver MRI-PDFF (Bâ=â-0.247, Pâ=â0.048; and Bâ=â-0.234, Pâ=â0.009). CONCLUSIONS: Dairy fat intake, plasma C15:0, and plasma iso-C17:0 were inversely correlated with hepatic steatosis in children. These hypothesis-generating findings should be tested through clinical trials to better inform dietary guidelines.
Assuntos
Ácidos Graxos , Hepatopatia Gordurosa não Alcoólica , Adolescente , Criança , Estudos Transversais , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagemRESUMO
Although norm-referenced scores are essential to the identification of disability, they possess several features which affect their sensitivity to change. Norm-referenced scores often decrease over time among people with neurodevelopmental disorders who exhibit slower-than-average increases in ability. Further, the reliability of norm-referenced scores is lower at the tails of the distribution, resulting in floor effects and increased measurement error for people with neurodevelopmental disorders. In contrast, the person ability scores generated during the process of constructing a standardized test with item response theory are designed to assess change. We illustrate these limitations of norm-referenced scores, and relative advantages of ability scores, using data from studies of autism spectrum disorder and creatine transporter deficiency.
Assuntos
Transtornos do Neurodesenvolvimento/diagnóstico , Testes Neuropsicológicos/normas , Avaliação de Resultados em Cuidados de Saúde/normas , Psicometria/normas , Transtorno do Espectro Autista/diagnóstico , Encefalopatias Metabólicas Congênitas/diagnóstico , Criança , Creatina/deficiência , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiênciaRESUMO
The incidence of type 2 diabetes is increasing more rapidly in adolescents than in any other age group. We identified and compared metabolite signatures in obese children with type 2 diabetes (T2D), obese children without diabetes (OB), and healthy, age- and gender-matched normal weight controls (NW) by measuring 273 analytes in fasting plasma and 24-hour urine samples from 90 subjects by targeted LC-MS/MS. Diabetic subjects were within 2 years of diagnosis in an attempt to capture early-stage disease prior to declining renal function. We found 22 urine metabolites that were uniquely associated with T2D when compared to OB and NW groups. The metabolites most significantly elevated in T2D youth included members of the betaine pathway, nucleic acid metabolism, and branched-chain amino acids (BCAAs) and their catabolites. Notably, the metabolite pattern in OB and T2D groups differed between urine and plasma, suggesting that urinary BCAAs and their intermediates behaved as a more specific biomarker for T2D, while plasma BCAAs associated with the obese, insulin resistant state independent of diabetes status. Correlative analysis of metabolites in the T2D signature indicated that betaine metabolites, BCAAs, and aromatic amino acids were associated with hyperglycemia, but BCAA acylglycine derivatives and nucleic acid metabolites were linked to insulin resistance. Of major interest, we found that urine levels of succinylaminoimidazole carboxamide riboside (SAICA-riboside) were increased in diabetic youth, identifying urine SAICA-riboside as a potential biomarker for T2D.
Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Obesidade/metabolismo , Purinas/biossíntese , Adolescente , Aminoácidos de Cadeia Ramificada/metabolismo , Betaína/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Estudos Transversais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/urina , Feminino , Humanos , Masculino , Metabolômica/métodos , Ácidos Nucleicos/metabolismo , Obesidade/sangue , Obesidade/urina , Espectrometria de Massas em Tandem , Adulto JovemRESUMO
CBS deficient individuals undergoing betaine supplementation without sufficient dietary methionine restriction can develop severe hypermethioninemia and brain edema. Brain edema has also been observed in individuals with severe hypermethioninemia without concomitant betaine supplementation. We systematically evaluated reports from 11 published and 4 unpublished patients with CBS deficiency and from additional four cases of encephalopathy in association with elevated methionine. We conclude that, while betaine supplementation does greatly exacerbate methionine accumulation, the primary agent causing brain edema is methionine rather than betaine. Clinical signs of increased intracranial pressure have not been seen in patients with plasma methionine levels below 559 µmol/L but occurred in one patient whose levels did not knowingly exceed 972 µmol/L at the time of manifestation. While levels below 500 µmol/L can be deemed safe it appears that brain edema can develop with plasma methionine levels close to 1000 µmol/L. Patients with CBS deficiency on betaine supplementation need to be regularly monitored for concordance with their dietary plan and for plasma methionine concentrations. Recurrent methionine levels above 500 µmol/L should alert clinicians to check for clinical signs and symptoms of brain edema and review dietary methionine intake. Levels approaching 1000 µmol/L do increase the risk of complications and levels exceeding 1000 µmol/L, despite best dietetic efforts, should be acutely addressed by reducing the prescribed betaine dose.
RESUMO
We report that recessive inheritance of a post-GPI attachment to proteins 2 (PGAP2) gene variant results in the hyperphosphatasia with neurologic deficit (HPMRS) phenotype described by Mabry et al., in 1970. HPMRS, or Mabry syndrome, is now known to be one of 21 inherited glycosylphosphatidylinositol (GPI) deficiencies (IGDs), or GPI biosynthesis defects (GPIBDs). Bi-allelic mutations in at least six genes result in HPMRS phenotypes. Disruption of four phosphatidylinositol glycan (PIG) biosynthesis genes, PIGV, PIGO, PIGW and PIGY, expressed in the endoplasmic reticulum, result in HPMRS 1, 2, 5 and 6; disruption of the PGAP2 and PGAP3 genes, necessary for stabilizing the association of GPI anchored proteins (AP) with the Golgi membrane, result in HPMRS 3 and 4. We used exome sequencing to identify a novel homozygous missense PGAP2 variant NM_014489.3:c.881Câ¯>â¯T, p.Thr294Met in two index patients and targeted sequencing to identify this variant in an unrelated patient. Rescue assays were conducted in two PGAP2 deficient cell lines, PGAP2 KO cells generated by CRISPR/Cas9 and PGAP2 deficient CHO cells, in order to examine the pathogenicity of the PGAP2 variant. First, we used the CHO rescue assay to establish that the wild type PGAP2 isoform 1, translated from transcript 1, is less active than the wild type PGAP2 isoform 8, translated from transcript 12 (alternatively spliced to omit exon 3). As a result, in our variant rescue assays, we used the more active NM_001256240.2:c.698Câ¯>â¯T, p.Thr233Met isoform 8 instead of NM_014489.3:c.881Câ¯>â¯T, p.Thr294Met isoform 1. Flow cytometric analysis showed that restoration of cell surface CD59 and CD55 with variant PGAP2 isoform 8, driven by the weak (pTA FLAG) promoter, was less efficient than wild type isoform 8. Therefore, we conclude that recessive inheritance of c.881Câ¯>â¯T PGAP2, expressed as the hypomorphic PGAP2 c.698Câ¯>â¯T, p.Thr233Met isoform 8, results in prototypical Mabry phenotype, HPMRS3 (GPIBD 8 [MIM: 614207]). This study highlights the need for long-term follow up of individuals with rare diseases in order to ensure that they benefit from innovations in diagnosis and treatment.
Assuntos
Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Proteínas Nucleares/genética , Distúrbios do Metabolismo do Fósforo/genética , Adolescente , Adulto , Animais , Células CHO , Criança , Cricetulus , Feminino , Glicosilfosfatidilinositóis/deficiência , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Proteínas Nucleares/metabolismo , Adulto JovemRESUMO
Anaplerotic odd-chain fatty acid supplementation has been suggested as an approach to replenish citric acid cycle intermediate (CACi) pools and facilitate adenosine triphosphate (ATP) production in subjects with long-chain fatty acid oxidation disorders, but the evidence that cellular CACi depletion exists and that repletion occurs following anaplerotic substrate supplementation is limited. We exercised very long-chain acyl-CoA dehydrogenase-deficient (VLCAD-/-) and wild-type (WT) mice to exhaustion and collected cardiac tissue for measurement of CACi by targeted metabolomics. In a second experimental group, VLCAD-/- and WT mice that had been fed chow prepared with either medium-chain triglyceride (MCT) oil or triheptanoin for 4 weeks were exercised for 60 minutes. VLCAD-/- mice exhibited lower succinate in cardiac muscle at exhaustion than WT mice suggesting lower CACi in VLCAD-/- with prolonged exercise. In mice fed either MCT or triheptanoin, succinate and malate were greater in VLCAD-/- mice fed triheptanoin compared to VLCAD-/- animals fed MCT but lower than WT mice fed triheptanoin. Long-chain odd acylcarnitines such as C19 were elevated in VLCAD-/- and WT mice fed triheptanoin suggesting some elongation of the heptanoate, but it is unknown what proportion of heptanoate was oxidized vs elongated. Prolonged exercise was associated with decreased cardiac muscle succinate in VLCAD-/- mice in comparison to WT mice. VLCAD-/- fed triheptanoin had increased succinate compared to VLCAD-/- mice fed MCT but lower than WT mice fed triheptanoin. Cardiac CACi were higher following dietary ingestion of an anaplerotic substrate, triheptanoin, in comparison to MCT.
Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Síndrome Congênita de Insuficiência da Medula Óssea/dietoterapia , Síndrome Congênita de Insuficiência da Medula Óssea/metabolismo , Erros Inatos do Metabolismo Lipídico/dietoterapia , Erros Inatos do Metabolismo Lipídico/metabolismo , Doenças Mitocondriais/dietoterapia , Doenças Mitocondriais/metabolismo , Doenças Musculares/dietoterapia , Doenças Musculares/metabolismo , Triglicerídeos/administração & dosagem , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Animais , Ciclo do Ácido Cítrico , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Gorduras na Dieta/administração & dosagem , Ácidos Graxos/metabolismo , Feminino , Erros Inatos do Metabolismo Lipídico/genética , Fígado/metabolismo , Masculino , Camundongos , Doenças Mitocondriais/genética , Doenças Musculares/genética , Miocárdio/metabolismo , Oxirredução , Triglicerídeos/químicaRESUMO
The product of thiamine phosphokinase is the cofactor for many enzymes, including the dehydrogenases of pyruvate, 2-ketoglutarate and branched chain ketoacids. Its deficiency has recently been described in a small number of patients, some of whom had a Leigh syndrome phenotype. The patient who also had a Leigh phenotype was initially found to have a low concentration of biotin in plasma and massive urinary excretion of biotin. Despite treatment with biotin and thiamine, her disease was progressive. Mutations c.311delG and c.426Gâ¯>â¯C were found in the TPK1 gene.
Assuntos
Doenças dos Gânglios da Base/genética , Biotina/uso terapêutico , Tiamina Pirofosfoquinase/deficiência , Tiamina Pirofosfoquinase/genética , Adulto , Doenças dos Gânglios da Base/metabolismo , Doenças dos Gânglios da Base/patologia , Biotina/sangue , Biotina/urina , Feminino , Humanos , Mutação , Fenótipo , Tiamina Pirofosfoquinase/metabolismo , Tiamina/uso terapêuticoRESUMO
Neuronal migration defects, including pachygyria, are among the most severe developmental brain defects in humans. Here, we identify biallelic truncating mutations in CTNNA2, encoding αN-catenin, in patients with a distinct recessive form of pachygyria. CTNNA2 was expressed in human cerebral cortex, and its loss in neurons led to defects in neurite stability and migration. The αN-catenin paralog, αE-catenin, acts as a switch regulating the balance between ß-catenin and Arp2/3 actin filament activities1. Loss of αN-catenin did not affect ß-catenin signaling, but recombinant αN-catenin interacted with purified actin and repressed ARP2/3 actin-branching activity. The actin-binding domain of αN-catenin or ARP2/3 inhibitors rescued the neuronal phenotype associated with CTNNA2 loss, suggesting ARP2/3 de-repression as a potential disease mechanism. Our findings identify CTNNA2 as the first catenin family member with biallelic mutations in humans, causing a new pachygyria syndrome linked to actin regulation, and uncover a key factor involved in ARP2/3 repression in neurons.
Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Movimento Celular/genética , Córtex Cerebral/fisiologia , Neurônios/patologia , alfa Catenina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Embrião de Mamíferos , Genoma Humano , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Linhagem , alfa Catenina/metabolismoRESUMO
Homocystinuria is an inherited metabolic disorder most commonly caused by cystathionine ß-synthase deficiency. Severe cases can cause white matter abnormalities that can mimic other vascular, toxic and metabolic disorders on computed tomography and magnetic resonance imaging. We present such a case which demonstrates not only extensive white matter abnormalities on magnetic resonance imaging, but also previously unreported basal ganglia signal abnormalities and imaging manifestations of increased intracranial pressure, likely caused by elevated methionine and betaine therapy. We also review the literature and discuss the potential underlying biologic mechanisms of these imaging findings.
Assuntos
Edema Encefálico/diagnóstico por imagem , Homocistinúria/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Biomarcadores/análise , Feminino , Humanos , Lactente , Punção EspinalRESUMO
Metabolomics is one of the newer omics fields, and has enabled researchers to complement genomic and protein level analysis of disease with both semi-quantitative and quantitative metabolite levels, which are the chemical mediators that constitute a given phenotype. Over more than a decade, methodologies have advanced for both targeted (quantification of specific analytes) as well as untargeted metabolomics (biomarker discovery and global metabolite profiling). Untargeted metabolomics is especially useful when there is no a priori metabolic hypothesis. Liquid chromatography coupled to mass spectrometry (LC-MS) has been the preferred choice for untargeted metabolomics, given the versatility in metabolite coverage and sensitivity of these instruments. Resolving and profiling many hundreds to thousands of metabolites with varying chemical properties in a biological sample presents unique challenges, or pitfalls. In this review, we address the various obstacles and corrective measures available in four major aspects associated with an untargeted metabolomics experiment: (1) experimental design, (2) pre-analytical (sample collection and preparation), (3) analytical (chromatography and detection), and (4) post-analytical (data processing).
Assuntos
Pesquisa Biomédica , Metabolômica/métodos , Artefatos , Pesquisa Biomédica/métodos , Pesquisa Biomédica/normas , Pesquisa Biomédica/tendências , Calibragem , Cromatografia Líquida , Humanos , Metaboloma , Metabolômica/normas , Projetos de Pesquisa , Espectrometria de Massas em TandemRESUMO
BACKGROUND: Late-onset Pompe disease is a rare genetic neuromuscular disorder caused by lysosomal acid alpha-glucosidase (GAA) deficiency that ultimately results in mobility loss and respiratory failure. Current enzyme replacement therapy with recombinant human (rh)GAA has demonstrated efficacy in subjects with late-onset Pompe disease. However, long-term effects of rhGAA on pulmonary function have not been observed, likely related to inefficient delivery of rhGAA to skeletal muscle lysosomes and associated deficits in the central nervous system. To address this limitation, reveglucosidase alfa, a novel insulin-like growth factor 2 (IGF2)-tagged GAA analogue with improved lysosomal uptake, was developed. This study evaluated the pharmacokinetics, safety, and exploratory efficacy of reveglucosidase alfa in 22 subjects with late-onset Pompe disease who were previously untreated with rhGAA. RESULTS: Reveglucosidase alfa plasma concentrations increased linearly with dose, and the elimination half-life was <1.2 h. Eighteen of 22 subjects completed 72 weeks of treatment. The most common adverse events were hypoglycemia (63%), dizziness, fall, headache, and nausea (55% for each). Serious adverse events included hypersensitivity (n = 1), symptomatic hypoglycemia (n = 2), presyncope (n = 1), and acute cardiac failure (n = 1). In the dose-escalation study, all treated subjects tested positive for anti-reveglucosidase alfa, anti-rhGAA, anti-IGF1, and anti-IGF2 antibodies at least once. Subjects receiving 20 mg/kg of reveglucosidase alfa demonstrated increases in predicted maximum inspiratory pressure (13.9%), predicted maximum expiratory pressure (8.0%), forced vital capacity (-0.4%), maximum voluntary ventilation (7.4 L/min), and mean absolute walking distance (22.3 m on the 6-min walk test) at 72 weeks. CONCLUSIONS: Additional studies are needed to further assess the safety and efficacy of this approach. Improvements in respiratory muscle strength, lung function, and walking endurance in subjects with LOPD may make up for the risk of hypersensitivity reactions and hypoglycemia. Reveglucosidase alfa may provide a new treatment option for patients with late-onset Pompe disease. TRIAL REGISTRATION: ISRCTN01435772 and ISRCTN01230801 , registered 27 October 2011.
Assuntos
Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , alfa-Glucosidases/efeitos adversos , alfa-Glucosidases/uso terapêutico , Adulto , Terapia de Reposição de Enzimas/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismoRESUMO
Holocarboxylase synthetase (HLCS) deficiency is a rare autosomal recessive disorder that presents with multiple life-threatening metabolic derangements including metabolic acidosis, ketosis, and hyperammonemia. A majority of HLCS deficiency patients respond to biotin therapy; however, some patients show only a partial or no response to biotin therapy. Here, we report a neonatal presentation of HLCS deficiency with partial response to biotin therapy. Sequencing of HLCS showed a novel heterozygous mutation in exon 5, c.996G>C (p.Gln332His), which likely abolishes the normal intron 6 splice donor site. Cytogenetic analysis revealed that the defect of the other allele is a paracentric inversion on chromosome 21 that disrupts HLCS. This case illustrates that in addition to facilitating necessary family testing, a molecular diagnosis can optimize management by providing a better explanation of the enzyme's underlying defect. It also emphasizes the potential benefit of a karyotype in cases in which molecular genetic testing fails to provide an explanation.
RESUMO
Nephropathic cystinosis is an autosomal recessive metabolic, lifelong disease characterized by lysosomal cystine accumulation throughout the body that commonly presents in infancy with a renal Fanconi syndrome and, if untreated, leads to end-stage kidney disease (ESKD) in the later childhood years. The molecular basis is due to mutations in CTNS, the gene encoding for the lysosomal cystine-proton cotransporter, cystinosin. During adolescence and adulthood, extrarenal manifestations of cystinosis develop and require multidisciplinary care. Despite substantial improvement in prognosis due to cystine-depleting therapy with cysteamine, no cure of the disease is currently available. Kidney Disease: Improving Global Outcomes (KDIGO) convened a Controversies Conference on cystinosis to review the state-of-the-art knowledge and to address areas of controversies in pathophysiology, diagnostics, monitoring, and treatment in different age groups. More importantly, promising areas of investigation that may lead to optimal outcomes for patients afflicted with this lifelong, systemic disease were discussed with a research agenda proposed for the future.
Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Cisteamina/uso terapêutico , Eliminadores de Cistina/uso terapêutico , Cistina/metabolismo , Cistinose/etiologia , Doenças Raras/etiologia , Adolescente , Adulto , Fatores Etários , Criança , Congressos como Assunto , Cisteamina/efeitos adversos , Eliminadores de Cistina/efeitos adversos , Cistinose/complicações , Cistinose/diagnóstico , Cistinose/terapia , Síndrome de Fanconi/complicações , Síndrome de Fanconi/tratamento farmacológico , Testes Genéticos , Terapia Genética , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas , Humanos , Terapia de Imunossupressão/efeitos adversos , Lactente , Falência Renal Crônica/etiologia , Transplante de Rim/efeitos adversos , Lisossomos/metabolismo , Mutação , Doenças Raras/complicações , Doenças Raras/diagnóstico , Doenças Raras/terapia , Diálise RenalRESUMO
BACKGROUND: Cystine determination is a critical biochemical test for the diagnosis and therapeutic monitoring of the lysosomal storage disease cystinosis. The classical mixed-leukocyte cystine assay requires prompt specialized recovery/isolation following blood drawing, providing cystine concentrations normalized to total protein from assorted types of white blood cells, each with varying cystine content. METHODS: We present a new workflow for cystine determination using immunomagnetic granulocyte purification, and new reference ranges established from 47 patient and 27 obligate heterozygote samples assayed. Samples were collected in acid-citrate dextrose tubes and their stability was proven to allow for overnight shipping before analysis. Cystine was quantified by LC-MS/MS. RESULTS: The new method was reproducible (<15% root mean square error) and specific, assaying purified granulocytes from blood samples that no longer required immediate preparation and therefore allowing for up to 30 h before processing. There was a nearly a 2-fold increase in the therapeutic target (1.9 nmol half-cystine/mg protein) range, established using distributions of patient, obligate heterozygote, and control samples. The 2.5-97.5 percentile ranges (-2 SD to +2 SD around mean) for these cohorts were 0.67-6.05 nmol/mg protein for patients, 0.33-1.35 nmol/mg protein for obligate heterozygotes, and 0.09-0.35 nmol/mg protein for controls. CONCLUSIONS: The intracellular cystine determination method using immunopurified granulocytes followed by LC-MS/MS analysis improves the inherent variability of mixed leukocyte analysis and eliminates the need for immediate sample preparation following blood draw.
Assuntos
Cistina/sangue , Cistinose/sangue , Cistinose/diagnóstico , Granulócitos/patologia , Separação Imunomagnética , Adolescente , Adulto , Criança , Pré-Escolar , Cromatografia Líquida , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem , Adulto JovemRESUMO
Many human skin diseases, such as seborrheic dermatitis, potentially occur due to the over-growth of fungi. It remains a challenge to develop fungicides with a lower risk of generating resistant fungi and non-specifically killing commensal microbes. Our probiotic approaches using a selective fermentation initiator of skin commensal bacteria, fermentation metabolites or their derivatives provide novel therapeutics to rein in the over-growth of fungi. Staphylococcus lugdunensis (S. lugdunensis) bacteria and Candida parapsilosis (C. parapsilosis) fungi coexist in the scalp microbiome. S. lugdunensis interfered with the growth of C. parapsilosis via fermentation. A methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) copolymer functioned as a selective fermentation initiator of S. lugdunensis, selectively triggering the S. lugdunensis fermentation to produce acetic and isovaleric acids. The acetic acid and its pro-drug diethyleneglycol diacetate (Ac-DEG-Ac) effectively suppressed the growth of C. parapsilosis in vitro and impeded the fungal expansion in the human dandruff. We demonstrate for the first time that S. lugdunensis is a skin probiotic bacterium that can exploit mPEG-PCL to yield fungicidal short-chain fatty acids (SCFAs). The concept of bacterial fermentation as a part of skin immunity to re-balance the dysbiotic microbiome warrants a novel avenue for studying the probiotic function of the skin microbiome in promoting health.
RESUMO
BACKGROUND: The hepatic urea cycle is the main metabolic pathway for detoxification of ammonia. Inborn errors of urea cycle function present with severe hyperammonemia and a high case fatality rate. Long-term prognosis depends on the residual activity of the defective enzyme. A reliable method to estimate urea cycle activity in-vivo does not exist yet. The aim of this study was to evaluate a practical method to quantify (13)C-urea production as a marker for urea cycle function in healthy subjects, patients with confirmed urea cycle defect (UCD) and asymptomatic carriers of UCD mutations. METHODS: (13)C-labeled sodium acetate was applied orally in a single dose to 47 subjects (10 healthy subjects, 28 symptomatic patients, 9 asymptomatic carriers). RESULTS: The oral (13)C-ureagenesis assay is a safe method. While healthy subjects and asymptomatic carriers did not differ with regards to kinetic variables for urea cycle flux, symptomatic patients had lower (13)C-plasma urea levels. Although the (13)C-ureagenesis assay revealed no significant differences between individual urea cycle enzyme defects, it reflected the heterogeneity between different clinical subgroups, including male neonatal onset ornithine carbamoyltransferase deficiency. Applying the (13)C-urea area under the curve can differentiate between severe from more mildly affected neonates. Late onset patients differ significantly from neonates, carriers and healthy subjects. CONCLUSION: This study evaluated the oral (13)C-ureagenesis assay as a sensitive in-vivo measure for ureagenesis capacity. The assay has the potential to become a reliable tool to differentiate UCD patient subgroups, follow changes in ureagenesis capacity and could be helpful in monitoring novel therapies of UCD.