Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Commun ; 12(1): 4445, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290245

RESUMO

Immune checkpoint inhibitors demonstrate clinical activity in many tumor types, however, only a fraction of patients benefit. Combining CD137 agonists with these inhibitors increases anti-tumor activity preclinically, but attempts to translate these observations to the clinic have been hampered by systemic toxicity. Here we describe a human CD137xPD-L1 bispecific antibody, MCLA-145, identified through functional screening of agonist- and immune checkpoint inhibitor arm combinations. MCLA-145 potently activates T cells at sub-nanomolar concentrations, even under suppressive conditions, and enhances T cell priming, differentiation and memory recall responses. In vivo, MCLA-145 anti-tumor activity is superior to immune checkpoint inhibitor comparators and linked to recruitment and intra-tumor expansion of CD8 + T cells. No graft-versus-host-disease is observed in contrast to other antibodies inhibiting the PD-1 and PD-L1 pathway. Non-human primates treated with 100 mg/kg/week of MCLA-145 show no adverse effects. The conditional activation of CD137 signaling by MCLA-145, triggered by neighboring cells expressing >5000 copies of PD-L1, may provide both safety and potency advantages.


Assuntos
Ligante 4-1BB/agonistas , Anticorpos Biespecíficos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Linfócitos T CD8-Positivos/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Ligante 4-1BB/imunologia , Animais , Anticorpos Biespecíficos/imunologia , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Tolerância Imunológica/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Imunoterapia , Ativação Linfocitária/efeitos dos fármacos
2.
Nanomedicine ; 8(5): 712-20, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22024193

RESUMO

Nanosized cell-derived membrane vesicles are increasingly recognized as therapeutic vehicles and high-potential biomarkers for several diseases. Currently available methods allow bulk analysis of vesicles but are not suited for accurate quantification and fail to reveal phenotypic heterogeneity in membrane vesicle populations. For such analyses, single vesicle-based, multiparameter, high-throughput methods are needed. We developed a fluorescence-based, high-resolution flow cytometric method for quantitative and qualitative analysis of nanosized membrane vesicles. Proof of principle was obtained by single-particle analysis of virions and liposomes. Further validation was obtained by quantification of cell-derived nanosized membrane vesicles from cell cultures and body fluids. An important aspect was that the technology was extended to detect specific proteins on individual vesicles. This allowed identification of exosome subsets and phenotyping of individual exosomes produced by dendritic cells (DCs) undergoing different modes of activation. The described technology allows quantitative, multiparameter, and high-throughput analysis of a wide variety of nanosized particles and has broad applications. FROM THE CLINICAL EDITOR: The authors developed a fluorescence-based, high-resolution flow cytometric method for quantitative and qualitative analysis of nanosized cell-derived membrane vesicles that are increasingly recognized both as therapeutic vehicles and high-potential biomarkers for several diseases. A high throughput, easily available, and sensitive detection method such as the one discussed here is a critically important prerequisite for further refinements of this technology.


Assuntos
Micropartículas Derivadas de Células/ultraestrutura , Endossomos/ultraestrutura , Exossomos/ultraestrutura , Citometria de Fluxo/métodos , Nanopartículas/ultraestrutura , Animais , Células Cultivadas , Células Dendríticas/ultraestrutura , Humanos , Lipossomos/análise , Lipossomos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/análise , Sêmen/citologia , Vírion/ultraestrutura
3.
J Virol ; 84(19): 10366-74, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20686020

RESUMO

The emergence and subsequent swift and global spread of the swine-origin influenza virus A(H1N1) in 2009 once again emphasizes the strong need for effective vaccines that can be developed rapidly and applied safely. With this aim, we produced soluble, multimeric forms of the 2009 A(H1N1) HA (sHA(3)) and NA (sNA(4)) surface glycoproteins using a virus-free mammalian expression system and evaluated their efficacy as vaccines in ferrets. Immunization twice with 3.75-microg doses of these antigens elicited strong antibody responses, which were adjuvant dependent. Interestingly, coadministration of both antigens strongly enhanced the HA-specific but not the NA-specific responses. Distinct patterns of protection were observed upon challenge inoculation with the homologous H1N1 virus. Whereas vaccination with sHA(3) dramatically reduced virus replication (e.g., by lowering pulmonary titers by about 5 log(10) units), immunization with sNA(4) markedly decreased the clinical effects of infection, such as body weight loss and lung pathology. Clearly, optimal protection was achieved by the combination of the two antigens. Our observations demonstrate the great vaccine potential of multimeric HA and NA ectodomains, as these can be easily, rapidly, flexibly, and safely produced in high quantities. In particular, our study underscores the underrated importance of NA in influenza vaccination, which we found to profoundly and specifically contribute to protection by HA. Its inclusion in a vaccine is likely to reduce the HA dose required and to broaden the protective immunity.


Assuntos
Furões/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/farmacologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Antivirais/biossíntese , Reações Cruzadas , Surtos de Doenças/prevenção & controle , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Pulmão/patologia , Modelos Animais , Neuraminidase/química , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/patologia , Multimerização Proteica , Solubilidade , Suínos/virologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/farmacologia , Replicação Viral
4.
Proc Natl Acad Sci U S A ; 106(2): 582-7, 2009 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-19124777

RESUMO

Coronaviruses are enveloped viruses containing the largest reported RNA genomes. As a result of their pleomorphic nature, our structural insight into the coronavirion is still rudimentary, and it is based mainly on 2D electron microscopy. Here we report the 3D virion structure of coronaviruses obtained by cryo-electron tomography. Our study focused primarily on the coronavirus prototype murine hepatitis virus (MHV). MHV particles have a distinctly spherical shape and a relatively homogenous size ( approximately 85 nm envelope diameter). The viral envelope exhibits an unusual thickness (7.8 +/- 0.7 nm), almost twice that of a typical biological membrane. Focal pairs revealed the existence of an extra internal layer, most likely formed by the C-terminal domains of the major envelope protein M. In the interior of the particles, coiled structures and tubular shapes are observed, consistent with a helical nucleocapsid model. Our reconstructions provide no evidence of a shelled core. Instead, the ribonucleoprotein seems to be extensively folded onto itself, assuming a compact structure that tends to closely follow the envelope at a distance of approximately 4 nm. Focal contact points and thread-like densities connecting the envelope and the ribonucleoprotein are revealed in the tomograms. Transmissible gastroenteritis coronavirion tomograms confirm all the general features and global architecture observed for MHV. We propose a general model for the structure of the coronavirion in which our own and published observations are combined.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Vírus da Hepatite Murina/ultraestrutura , Vírion/ultraestrutura , Animais , Coronavirus , Camundongos , Vírus da Hepatite Murina/química , Nucleocapsídeo/química , Nucleocapsídeo/ultraestrutura , Proteínas do Envelope Viral/química , Vírion/química
5.
J Virol ; 82(17): 8887-90, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18562523

RESUMO

Unlike other class I viral fusion proteins, spike proteins on severe acute respiratory syndrome coronavirus virions are uncleaved. As we and others have demonstrated, infection by this virus depends on cathepsin proteases present in endosomal compartments of the target cell, suggesting that the spike protein acquires its fusion competence by cleavage during cell entry rather than during virion biogenesis. Here we demonstrate that cathepsin L indeed activates the membrane fusion function of the spike protein. Moreover, cleavage was mapped to the same region where, in coronaviruses carrying furin-activated spikes, the receptor binding subunit of the protein is separated from the membrane-anchored fusion subunit.


Assuntos
Catepsinas/metabolismo , Cisteína Endopeptidases/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Proteínas Virais de Fusão/classificação , Proteínas Virais de Fusão/metabolismo , Animais , Catepsina L , Catepsinas/farmacologia , Chlorocebus aethiops , Cisteína Endopeptidases/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Peptídeos/metabolismo , Plasmídeos , Temperatura , Fatores de Tempo , Transfecção , Tripsina/farmacologia , Células Vero
6.
J Virol ; 82(5): 2580-5, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18077706

RESUMO

Peptides based on heptad repeat (HR) domains of class I viral fusion proteins are considered promising antiviral drugs targeting virus cell entry. We have analyzed the evolution of the mouse hepatitis coronavirus during multiple passaging in the presence of an HR2-based fusion inhibitor. Drug-resistant variants emerged as a result of multiple substitutions in the spike fusion protein, notably within a 19-residue segment of the HR1 region. Strikingly, one mutation, an A1006V substitution, which consistently appeared first in four independently passaged viruses, was the main determinant of the resistance phenotype, suggesting that only limited options exist for escape from the inhibitory effect of the HR2 peptide.


Assuntos
Coronavirus/fisiologia , Fusão de Membrana , Glicoproteínas de Membrana/química , Mutação , Peptídeos/fisiologia , Proteínas do Envelope Viral/química , Animais , Linhagem Celular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiologia , Camundongos , Sequências Repetitivas de Aminoácidos , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA