Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1419, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228813

RESUMO

Onoceroids are a rare family of triterpenes. One representative onoceroid is ambrein, which is the main component of ambergris used as a traditional medicine. We have previously identified the onoceroid synthase, BmeTC, in Bacillus megaterium and succeeded in creating ambrein synthase by introducing mutations into BmeTC. Owing to the structural similarity of ambrein to vitamin D, a molecule with diverse biological activities, we hypothesized that some of the activities of ambergris may be induced by the binding of ambrein to the vitamin D receptor (VDR). We demonstrated the VDR binding ability of ambrein. By comparing the structure-activity relationships of triterpenes with both the VDR affinity and osteoclastic differentiation-promoting activity, we observed that the activity of ambrein was not induced via the VDR. Therefore, some of the activities of ambergris, but not all, can be attributed to its VDR interaction. Additionally, six unnatural onoceroids were synthesized using the BmeTC reactions, and these compounds exhibited higher VDR affinity than that of ambrein. Enzymatic syntheses of onoceroid libraries will be valuable in creating a variety of bioactive compounds beyond ambergris.


Assuntos
Âmbar-Gris , Triterpenos , Âmbar-Gris/química , Receptores de Calcitriol , Triterpenos/farmacologia , Naftóis/química , Vitamina D
2.
Nature ; 618(7965): 513-518, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37015289

RESUMO

The replacement of benzene rings with sp3-hybridized bioisosteres in drug candidates generally improves pharmacokinetic properties while retaining biological activity1-5. Rigid, strained frameworks such as bicyclo[1.1.1]pentane and cubane are particularly well suited as the ring strain imparts high bond strength and thus metabolic stability on their C-H bonds. Cubane is the ideal bioisostere as it provides the closest geometric match to benzene6,7. At present, however, all cubanes in drug design, like almost all benzene bioisosteres, act solely as substitutes for mono- or para-substituted benzene rings1-7. This is owing to the difficulty of accessing 1,3- and 1,2-disubstituted cubane precursors. The adoption of cubane in drug design has been further hindered by the poor compatibility of cross-coupling reactions with the cubane scaffold, owing to a competing metal-catalysed valence isomerization8-11. Here we report expedient routes to 1,3- and 1,2-disubstituted cubane building blocks using a convenient cyclobutadiene precursor and a photolytic C-H carboxylation reaction, respectively. Moreover, we leverage the slow oxidative addition and rapid reductive elimination of copper to develop C-N, C-C(sp3), C-C(sp2) and C-CF3 cross-coupling protocols12,13. Our research enables facile elaboration of all cubane isomers into drug candidates, thus enabling ideal bioisosteric replacement of ortho-, meta- and para-substituted benzenes.

3.
J Med Chem ; 64(17): 12723-12737, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34428039

RESUMO

Eukaryotes have evolved two major pathways to repair potentially lethal DNA double-strand breaks. Homologous recombination represents a precise, DNA-template-based mechanism available during the S and G2 cell cycle phase, whereas non-homologous end joining, which requires DNA-dependent protein kinase (DNA-PK), allows for fast, cell cycle-independent but less accurate DNA repair. Here, we report the discovery of BAY-8400, a novel selective inhibitor of DNA-PK. Starting from a triazoloquinoxaline, which had been identified as a hit from a screen for ataxia telangiectasia and Rad3-related protein (ATR) inhibitors with inhibitory activity against ATR, ATM, and DNA-PK, lead optimization efforts focusing on potency and selectivity led to the discovery of BAY-8400. In in vitro studies, BAY-8400 showed synergistic activity of DNA-PK inhibition with DNA damage-inducing targeted alpha therapy. Combination of PSMA-targeted thorium-227 conjugate BAY 2315497 treatment of human prostate tumor-bearing mice with BAY-8400 oral treatment increased antitumor efficacy, as compared to PSMA-targeted thorium-227 conjugate monotherapy.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proteína Quinase Ativada por DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Proteína Quinase Ativada por DNA/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Hepatócitos/efeitos dos fármacos , Humanos , Camundongos , Estrutura Molecular , Fosfatidilinositol 3-Quinases/genética , Ratos , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Med Chem ; 63(13): 7293-7325, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32502336

RESUMO

The ATR kinase plays a key role in the DNA damage response by activating essential signaling pathways of DNA damage repair, especially in response to replication stress. Because DNA damage and replication stress are major sources of genomic instability, selective ATR inhibition has been recognized as a promising new approach in cancer therapy. We now report the identification and preclinical evaluation of the novel, clinical ATR inhibitor BAY 1895344. Starting from quinoline 2 with weak ATR inhibitory activity, lead optimization efforts focusing on potency, selectivity, and oral bioavailability led to the discovery of the potent, highly selective, orally available ATR inhibitor BAY 1895344, which exhibited strong monotherapy efficacy in cancer xenograft models that carry certain DNA damage repair deficiencies. Moreover, combination treatment of BAY 1895344 with certain DNA damage inducing chemotherapy resulted in synergistic antitumor activity. BAY 1895344 is currently under clinical investigation in patients with advanced solid tumors and lymphomas (NCT03188965).


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Morfolinas/administração & dosagem , Morfolinas/farmacocinética , Pirazóis/administração & dosagem , Pirazóis/farmacocinética , Administração Oral , Animais , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/química , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Disponibilidade Biológica , Carboplatina/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Inibidores do Citocromo P-450 CYP2C8/química , Inibidores do Citocromo P-450 CYP2C8/farmacologia , Reparo do DNA/efeitos dos fármacos , Cães , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Feminino , Humanos , Camundongos SCID , Microssomos Hepáticos/efeitos dos fármacos , Morfolinas/química , Pirazóis/química , Ratos Wistar , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Org Lett ; 22(2): 552-555, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31877051

RESUMO

An efficient strategy for the synthesis of the potent phospholipase A2 inhibitors spongidine A and D is presented. The tetracyclic core of the natural products was assembled via an intramolecular hydrogen atom transfer initiated Minisci reaction. A divergent late-stage functionalization of the tetracyclic ring system was also used to achieve a concise synthesis of petrosaspongiolide L methyl ester.


Assuntos
Ácido Oleanólico/síntese química , Piridinas/química , Estrutura Molecular , Ácido Oleanólico/química , Estereoisomerismo
6.
Chem Sci ; 8(12): 8285-8290, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29619174

RESUMO

The first chemical synthesis of pentacyclic onocerane triterpenoids has been achieved. A putative biomimetic tricyclization cascade is employed to forge a fused decalin-/oxepane ring system. The synthetic route proceeds to (+)-cupacinoxepin in seven steps and to (+)-onoceranoxide in eight steps in the longest linear sequence, when starting from geranyl chloride and (+)-sclareolide. The bioinspired epoxypolyene cyclization is supported by computational and enzymatic studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA