Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100433, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33610554

RESUMO

Defects in protein O-mannosylation lead to severe congenital muscular dystrophies collectively known as α-dystroglycanopathy. A hallmark of these diseases is the loss of the O-mannose-bound matriglycan on α-dystroglycan, which reduces cell adhesion to the extracellular matrix. Mutations in protein O-mannose ß1,2-N-acetylglucosaminyltransferase 1 (POMGNT1), which is crucial for the elongation of O-mannosyl glycans, have mainly been associated with muscle-eye-brain (MEB) disease. In addition to defects in cell-extracellular matrix adhesion, aberrant cell-cell adhesion has occasionally been observed in response to defects in POMGNT1. However, specific molecular consequences of POMGNT1 deficiency on cell-cell adhesion are largely unknown. We used POMGNT1 knockout HEK293T cells and fibroblasts from an MEB patient to gain deeper insight into the molecular changes in POMGNT1 deficiency. Biochemical and molecular biological techniques combined with proteomics, glycoproteomics, and glycomics revealed that a lack of POMGNT1 activity strengthens cell-cell adhesion. We demonstrate that the altered intrinsic adhesion properties are due to an increased abundance of N-cadherin (N-Cdh). In addition, site-specific changes in the N-glycan structures in the extracellular domain of N-Cdh were detected, which positively impact on homotypic interactions. Moreover, in POMGNT1-deficient cells, ERK1/2 and p38 signaling pathways are activated and transcriptional changes that are comparable with the epithelial-mesenchymal transition (EMT) are triggered, defining a possible molecular mechanism underlying the observed phenotype. Our study indicates that changes in cadherin-mediated cell-cell adhesion and other EMT-related processes may contribute to the complex clinical symptoms of MEB or α-dystroglycanopathy in general and suggests that the impact of changes in O-mannosylation on N-glycosylation has been underestimated.


Assuntos
Adesão Celular/fisiologia , N-Acetilglucosaminiltransferases/deficiência , N-Acetilglucosaminiltransferases/metabolismo , Antígenos CD/metabolismo , Antígenos CD/fisiologia , Caderinas/metabolismo , Caderinas/fisiologia , Adesão Celular/genética , Distroglicanas/metabolismo , Glicômica , Glicosilação , Glicosiltransferases/deficiência , Glicosiltransferases/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Manose/química , Distrofias Musculares/genética , N-Acetilglucosaminiltransferases/fisiologia , Polissacarídeos , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
PLoS One ; 11(11): e0166119, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812179

RESUMO

Protein O-mannosylation is a post-translational modification essential for correct development of mammals. In humans, deficient O-mannosylation results in severe congenital muscular dystrophies often associated with impaired brain and eye development. Although various O-mannosylated proteins have been identified in the recent years, the distribution of O-mannosyl glycans in the mammalian brain and target proteins are still not well defined. In the present study, rabbit monoclonal antibodies directed against the O-mannosylated peptide YAT(α1-Man)AV were generated. Detailed characterization of clone RKU-1-3-5 revealed that this monoclonal antibody recognizes O-linked mannose also in different peptide and protein contexts. Using this tool, we observed that mono-O-mannosyl glycans occur ubiquitously throughout the murine brain but are especially enriched at inhibitory GABAergic neurons and at the perineural nets. Using a mass spectrometry-based approach, we further identified glycoproteins from the murine brain that bear single O-mannose residues. Among the candidates identified are members of the cadherin and plexin superfamilies and the perineural net protein neurocan. In addition, we identified neurexin 3, a cell adhesion protein involved in synaptic plasticity, and inter-alpha-trypsin inhibitor 5, a protease inhibitor important in stabilizing the extracellular matrix, as new O-mannosylated glycoproteins.


Assuntos
Encéfalo/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Manose/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Transporte Biológico , Encéfalo/citologia , Neurônios GABAérgicos/metabolismo , Camundongos
3.
Oncotarget ; 7(40): 65231-65246, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27533452

RESUMO

Dysregulation of tumor suppressor protein E-cadherin is an early molecular event in cancer. O-mannosylation profile of E-cadherin is a newly-described post-translational modification crucial for its adhesive functions in homeostasis. However, the role of O-mannosyl glycans in E-cadherin-mediated cell adhesion in cancer and their interplay with N-glycans remains largely unknown. We herein demonstrated that human gastric carcinomas exhibiting a non-functional E-cadherin display a reduced expression of O-mannosyl glycans concomitantly with increased modification with branched complex N-glycans. Accordingly, overexpression of MGAT5-mediated branched N-glycans both in gastric cancer cells and transgenic mice models led to a significant decrease of O-mannosyl glycans attached to E-cadherin that was associated with impairment of its tumour suppressive functions. Importantly, overexpression of protein O-mannosyltransferase 2 (POMT2) induced a reduced expression of branched N-glycans which led to a protective effect of E-cadherin biological functions. Overall, our results reveal a newly identified mechanism of (dys)regulation of E-cadherin that occur through the interplay between O-mannosylation and N-glycosylation pathway.


Assuntos
Adenocarcinoma/metabolismo , Caderinas/metabolismo , Neoplasias Gástricas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adenocarcinoma/patologia , Animais , Glicosilação , Humanos , Manose/metabolismo , Camundongos , Camundongos Transgênicos , Polissacarídeos , Processamento de Proteína Pós-Traducional/fisiologia , Neoplasias Gástricas/patologia
4.
Proc Natl Acad Sci U S A ; 110(52): 21024-9, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24297939

RESUMO

In recent years protein O-mannosylation has become a focus of attention as a pathomechanism underlying severe congenital muscular dystrophies associated with neuronal migration defects. A key feature of these disorders is the lack of O-mannosyl glycans on α-dystroglycan, resulting in abnormal basement membrane formation. Additional functions of O-mannosylation are still largely unknown. Here, we identify the essential cell-cell adhesion glycoprotein epithelial (E)-cadherin as an O-mannosylated protein and establish a functional link between O-mannosyl glycans and cadherin-mediated cell-cell adhesion. By genetically and pharmacologically blocking protein O-mannosyltransferases, we found that this posttranslational modification is essential for preimplantation development of the mouse embryo. O-mannosylation-deficient embryos failed to proceed from the morula to the blastocyst stage because of defects in the molecular architecture of cell-cell contact sites, including the adherens and tight junctions. Using mass spectrometry, we demonstrate that O-mannosyl glycans are present on E-cadherin, the major cell-adhesion molecule of blastomeres, and present evidence that this modification is generally conserved in cadherins. Further, the use of newly raised antibodies specific for an O-mannosyl-conjugated epitope revealed that these glycans are present on early mouse embryos. Finally, our cell-aggregation assays demonstrated that O-mannosyl glycans are crucial for cadherin-based cell adhesion. Our results redefine the significance of O-mannosylation in humans and other mammals, showing the immense impact of cadherins on normal as well as pathogenic cell behavior.


Assuntos
Junções Aderentes/metabolismo , Caderinas/metabolismo , Adesão Celular/fisiologia , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/fisiologia , Manose/metabolismo , Animais , Primers do DNA/genética , Cães , Embrião de Mamíferos/fisiologia , Imunofluorescência , Glicosilação , Células Madin Darby de Rim Canino , Espectrometria de Massas , Camundongos , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA