Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Adv Sci (Weinh) ; 11(13): e2307050, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38273642

RESUMO

Bone fracture healing is regulated by mechanobiological cues. Both, extracellular matrix (ECM) deposition and microvascular assembly determine the dynamics of the regenerative processes. Mechanical instability as by inter-fragmentary shear or compression is known to influence early ECM formation and wound healing. However, it remains unclear how these external cues shape subsequent ECM and microvascular network assembly. As transcriptional coactivators, the mechanotransducers yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) translate physical cues into downstream signaling events, yet their role in sprouting angiogenesis into the hematoma after injury is unknown. Using bone healing as model system for scar-free regeneration, the role of endothelial YAP/TAZ in combination with tuning the extrinsic mechanical stability via fracture fixation is investigated. Extrinsically imposed shear across the gap delayed hematoma remodeling and shaped the morphology of early collagen fiber orientations and microvascular networks, suggesting that enhanced shear increased the nutrient exchange in the hematoma. In contrast, endothelial YAP/TAZ deletion has little impact on the overall vascularization of the fracture gap, yet slightly increases the collagen fiber deposition under semi-rigid fixation. Together, these data provide novel insights into the respective roles of endothelial YAP/TAZ and extrinsic mechanical cues in orchestrating the process of bone regeneration.


Assuntos
Hematoma , Mecanotransdução Celular , Colágeno/metabolismo , Mecanotransdução Celular/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Consolidação da Fratura/fisiologia , Humanos , Hematoma/metabolismo , Hematoma/patologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia
2.
Development ; 149(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35312765

RESUMO

Molecular mechanisms controlling the formation, stabilisation and maintenance of blood vessel connections remain poorly defined. Here, we identify blood flow and the large extracellular protein Svep1 as co-modulators of vessel anastomosis during developmental angiogenesis in zebrafish embryos. Both loss of Svep1 and blood flow reduction contribute to defective anastomosis of intersegmental vessels. The reduced formation and lumenisation of the dorsal longitudinal anastomotic vessel (DLAV) is associated with a compensatory increase in Vegfa/Vegfr pERK signalling, concomittant expansion of apelin-positive tip cells, but reduced expression of klf2a. Experimentally, further increasing Vegfa/Vegfr signalling can rescue the DLAV formation and lumenisation defects, whereas its inhibition dramatically exacerbates the loss of connectivity. Mechanistically, our results suggest that flow and Svep1 co-regulate the stabilisation of vascular connections, in part by modulating the Vegfa/Vegfr signalling pathway.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Anastomose Cirúrgica , Animais , Morfogênese , Neovascularização Fisiológica/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34931661

RESUMO

Endothelial cell migration and proliferation are essential for the establishment of a hierarchical organization of blood vessels and optimal distribution of blood. However, how these cellular processes are quantitatively coordinated to drive vascular network morphogenesis remains unknown. Here, using the zebrafish vasculature as a model system, we demonstrate that the balanced distribution of endothelial cells, as well as the resulting regularity of vessel calibre, is a result of cell migration from veins towards arteries and cell proliferation in veins. We identify the Wiskott-Aldrich Syndrome protein (WASp) as an important molecular regulator of this process and show that loss of coordinated migration from veins to arteries upon wasb depletion results in aberrant vessel morphology and the formation of persistent arteriovenous shunts. We demonstrate that WASp achieves its function through the coordination of junctional actin assembly and PECAM1 recruitment and provide evidence that this is conserved in humans. Overall, we demonstrate that functional vascular patterning in the zebrafish trunk is established through differential cell migration regulated by junctional actin, and that interruption of differential migration may represent a pathomechanism in vascular malformations.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Morfogênese/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Proteína da Síndrome de Wiskott-Aldrich/genética , Actinas/genética , Animais , Artérias/crescimento & desenvolvimento , Artérias/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Junções Intercelulares/genética , Veias/crescimento & desenvolvimento , Veias/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
4.
Development ; 148(4)2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33547133

RESUMO

Previous studies have shown that Vasohibin 1 (Vash1) is stimulated by VEGFs in endothelial cells and that its overexpression interferes with angiogenesis in vivo Recently, Vash1 was found to mediate tubulin detyrosination, a post-translational modification that is implicated in many cell functions, such as cell division. Here, we used the zebrafish embryo to investigate the cellular and subcellular mechanisms of Vash1 on endothelial microtubules during formation of the trunk vasculature. We show that microtubules within venous-derived secondary sprouts are strongly and selectively detyrosinated in comparison with other endothelial cells, and that this difference is lost upon vash1 knockdown. Vash1 depletion in zebrafish specifically affected secondary sprouting from the posterior cardinal vein, increasing endothelial cell divisions and cell number in the sprouts. We show that altering secondary sprout numbers and structure upon Vash1 depletion leads to defective lymphatic vessel formation and ectopic lymphatic progenitor specification in the zebrafish trunk.


Assuntos
Proteínas de Ciclo Celular/genética , Desenvolvimento Embrionário/genética , Linfangiogênese/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Microtúbulos/metabolismo , Modelos Biológicos
5.
Front Physiol ; 11: 623769, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33737879

RESUMO

Vascular networks form, remodel and mature under the influence of multiple signals of mechanical or chemical nature. How endothelial cells read and interpret these signals, and how they integrate information when they are exposed to both simultaneously is poorly understood. Here, we show using flow-induced shear stress and VEGF-A treatment on endothelial cells in vitro, that the response to the magnitude of a mechanical stimulus is influenced by the concentration of a chemical stimulus, and vice versa. By combining different flow levels and different VEGF-A concentrations, front-rear polarity of endothelial cells against the flow direction was established in a flow and VEGF-A dose-response while their alignment with the flow displayed a biphasic response depending on the VEGF-A dose (perpendicular at physiological dose, aligned at no or pathological dose of VEGF-A). The effect of pharmaceutical inhibitors demonstrated that while VEGFR2 is essential for both polarity and orientation establishment in response to flow with and without VEGF-A, different downstream effectors were engaged depending on the presence of VEGF-A. Thus, Src family inhibition (c-Src, Yes, Fyn together) impaired alignment and polarity without VEGF-A while FAK inhibition modified polarity and alignment only when endothelial cells were exposed to VEGF-A. Studying endothelial cells in the aortas of VEGFR2Y949F mutant mice and SRC iEC-KO mice confirmed the role of VEGFR2 and specified the role of c-SRC in vivo. Endothelial cells of VEGFR2Y949F mutant mice lost their polarity and alignment while endothelial cells from SRC iEC-KO mice only showed reduced polarity. We propose here that VEGFR2 is a sensor able to integrate chemical and mechanical information simultaneously and that the underlying pathways and mechanisms activated will depend on the co-stimulation. Flow alone shifts VEGFR2 signaling toward a Src family pathway activation and a junctional effect (both in vitro and in vivo) while flow and VEGF-A together shift VEGFR2 signaling toward focal adhesion activation (in vitro) both modifying cell responses that govern orientation and polarity.

6.
J Cell Biol ; 217(5): 1651-1665, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29500191

RESUMO

Blood flow shapes vascular networks by orchestrating endothelial cell behavior and function. How endothelial cells read and interpret flow-derived signals is poorly understood. Here, we show that endothelial cells in the developing mouse retina form and use luminal primary cilia to stabilize vessel connections selectively in parts of the remodeling vascular plexus experiencing low and intermediate shear stress. Inducible genetic deletion of the essential cilia component intraflagellar transport protein 88 (IFT88) in endothelial cells caused premature and random vessel regression without affecting proliferation, cell cycle progression, or apoptosis. IFT88 mutant cells lacking primary cilia displayed reduced polarization against blood flow, selectively at low and intermediate flow levels, and have a stronger migratory behavior. Molecularly, we identify that primary cilia endow endothelial cells with strongly enhanced sensitivity to bone morphogenic protein 9 (BMP9), selectively under low flow. We propose that BMP9 signaling cooperates with the primary cilia at low flow to keep immature vessels open before high shear stress-mediated remodeling.


Assuntos
Vasos Sanguíneos/fisiologia , Proteínas Morfogenéticas Ósseas/farmacologia , Cílios/metabolismo , Células Endoteliais/metabolismo , Animais , Vasos Sanguíneos/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Mecânico , Remodelação Vascular/efeitos dos fármacos , Peixe-Zebra/embriologia
7.
Elife ; 72018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29400648

RESUMO

Formation of blood vessel networks by sprouting angiogenesis is critical for tissue growth, homeostasis and regeneration. How endothelial cells arise in adequate numbers and arrange suitably to shape functional vascular networks is poorly understood. Here we show that YAP/TAZ promote stretch-induced proliferation and rearrangements of endothelial cells whilst preventing bleeding in developing vessels. Mechanistically, YAP/TAZ increase the turnover of VE-Cadherin and the formation of junction associated intermediate lamellipodia, promoting both cell migration and barrier function maintenance. This is achieved in part by lowering BMP signalling. Consequently, the loss of YAP/TAZ in the mouse leads to stunted sprouting with local aggregation as well as scarcity of endothelial cells, branching irregularities and junction defects. Forced nuclear activity of TAZ instead drives hypersprouting and vascular hyperplasia. We propose a new model in which YAP/TAZ integrate mechanical signals with BMP signaling to maintain junctional compliance and integrity whilst balancing endothelial cell rearrangements in angiogenic vessels.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Junções Aderentes/metabolismo , Proliferação de Células , Células Endoteliais/fisiologia , Neovascularização Fisiológica , Fosfoproteínas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Caderinas/metabolismo , Proteínas de Ciclo Celular , Movimento Celular , Camundongos , Transativadores , Proteínas de Sinalização YAP
8.
Hypertension ; 66(4): 800-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26283042

RESUMO

Autosomal-dominant hypertension with brachydactyly is a salt-independent Mendelian syndrome caused by activating mutations in the gene encoding phosphodiesterase 3A. These mutations increase the protein kinase A-mediated phosphorylation of phosphodiesterase 3A resulting in enhanced cAMP-hydrolytic affinity and accelerated cell proliferation. The phosphorylated vasodilator-stimulated phosphoprotein is diminished, and parathyroid hormone-related peptide is dysregulated, potentially accounting for all phenotypic features. Untreated patients die prematurely of stroke; however, hypertension-induced target-organ damage is otherwise hardly apparent. We conducted clinical studies of vascular function, cardiac functional imaging, platelet function in affected and nonaffected persons, and cell-based assays. Large-vessel and cardiac functions indeed seem to be preserved. The platelet studies showed normal platelet function. Cell-based studies demonstrated that available phosphodiesterase 3A inhibitors suppress the mutant isoforms. However, increasing cGMP to indirectly inhibit the enzyme seemed to have particular use. Our results shed more light on phosphodiesterase 3A activation and could be relevant to the treatment of severe hypertension in the general population.


Assuntos
Braquidactilia/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , DNA/genética , Hipertensão/congênito , Mutação , Adolescente , Adulto , Pressão Sanguínea/fisiologia , Braquidactilia/diagnóstico , Braquidactilia/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Análise Mutacional de DNA , Ecocardiografia Doppler de Pulso , Feminino , Humanos , Hipertensão/diagnóstico , Hipertensão/enzimologia , Hipertensão/genética , Immunoblotting , Imagem Cinética por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Nat Genet ; 47(6): 647-53, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25961942

RESUMO

Cardiovascular disease is the most common cause of death worldwide, and hypertension is the major risk factor. Mendelian hypertension elucidates mechanisms of blood pressure regulation. Here we report six missense mutations in PDE3A (encoding phosphodiesterase 3A) in six unrelated families with mendelian hypertension and brachydactyly type E (HTNB). The syndrome features brachydactyly type E (BDE), severe salt-independent but age-dependent hypertension, an increased fibroblast growth rate, neurovascular contact at the rostral-ventrolateral medulla, altered baroreflex blood pressure regulation and death from stroke before age 50 years when untreated. In vitro analyses of mesenchymal stem cell-derived vascular smooth muscle cells (VSMCs) and chondrocytes provided insights into molecular pathogenesis. The mutations increased protein kinase A-mediated PDE3A phosphorylation and resulted in gain of function, with increased cAMP-hydrolytic activity and enhanced cell proliferation. Levels of phosphorylated VASP were diminished, and PTHrP levels were dysregulated. We suggest that the identified PDE3A mutations cause the syndrome. VSMC-expressed PDE3A deserves scrutiny as a therapeutic target for the treatment of hypertension.


Assuntos
Braquidactilia/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Hipertensão/congênito , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Estudos de Casos e Controles , Diferenciação Celular , Criança , Feminino , Estudos de Associação Genética , Células HeLa , Humanos , Hipertensão/genética , Cinética , Masculino , Células-Tronco Mesenquimais/fisiologia , Camundongos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Miócitos de Músculo Liso/fisiologia , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA