Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
2.
Elife ; 122024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376900

RESUMO

The nuclear pore complex (NPC) regulates the selective transport of large biomolecules through the nuclear envelope. As a model system for nuclear transport, we construct NPC mimics by functionalizing the pore walls of freestanding palladium zero-mode waveguides with the FG-nucleoporin Nsp1. This approach enables the measurement of single-molecule translocations through individual pores using optical detection. We probe the selectivity of Nsp1-coated pores by quantitatively comparing the translocation rates of the nuclear transport receptor Kap95 to the inert probe BSA over a wide range of pore sizes from 35 nm to 160 nm. Pores below 55 ± 5 nm show significant selectivity that gradually decreases for larger pores. This finding is corroborated by coarse-grained molecular dynamics simulations of the Nsp1 mesh within the pore, which suggest that leakage of BSA occurs by diffusion through transient openings within the dynamic mesh. Furthermore, we experimentally observe a modulation of the BSA permeation when varying the concentration of Kap95. The results demonstrate the potential of single-molecule fluorescence measurements on biomimetic NPCs to elucidate the principles of nuclear transport.


Assuntos
Nanoporos , Poro Nuclear , Humanos , Membrana Nuclear , Biomimética , Difusão , Translocação Genética
3.
Nat Commun ; 15(1): 690, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263337

RESUMO

It is estimated that two-thirds of all proteins in higher organisms are composed of multiple domains, many of them containing discontinuous folds. However, to date, most in vitro protein folding studies have focused on small, single-domain proteins. As a model system for a two-domain discontinuous protein, we study the unfolding/refolding of a slow-folding double mutant of the maltose binding protein (DM-MBP) using single-molecule two- and three-color Förster Resonance Energy Transfer experiments. We observe a dynamic folding intermediate population in the N-terminal domain (NTD), C-terminal domain (CTD), and at the domain interface. The dynamic intermediate fluctuates rapidly between unfolded states and compact states, which have a similar FRET efficiency to the folded conformation. Our data reveals that the delayed folding of the NTD in DM-MBP is imposed by an entropic barrier with subsequent folding of the highly dynamic CTD. Notably, accelerated DM-MBP folding is routed through the same dynamic intermediate within the cavity of the GroEL/ES chaperone system, suggesting that the chaperonin limits the conformational space to overcome the entropic folding barrier. Our study highlights the subtle tuning and co-dependency in the folding of a discontinuous multi-domain protein.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Dobramento de Proteína , Proteínas Ligantes de Maltose , Entropia , Projetos de Pesquisa
4.
ACS Nano ; 17(20): 20179-20193, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37791900

RESUMO

Single-molecule fluorescence imaging experiments generally require sub-nanomolar protein concentrations to isolate single protein molecules, which makes such experiments challenging in live cells due to high intracellular protein concentrations. Here, we show that single-molecule observations can be achieved in live cells through a drastic reduction in the observation volume using overmilled zero-mode waveguides (ZMWs- subwavelength-size holes in a metal film). Overmilling of the ZMW in a palladium film creates a nanowell of tunable size in the glass layer below the aperture, which cells can penetrate. We present a thorough theoretical and experimental characterization of the optical properties of these nanowells over a wide range of ZMW diameters and overmilling depths, showing an excellent signal confinement and a 5-fold fluorescence enhancement of fluorescent molecules inside nanowells. ZMW nanowells facilitate live-cell imaging as cells form stable protrusions into the nanowells. Importantly, the nanowells greatly reduce the cytoplasmic background fluorescence, enabling the detection of individual membrane-bound fluorophores in the presence of high cytoplasmic expression levels, which could not be achieved with TIRF microscopy. Zero-mode waveguide nanowells thus provide great potential to study individual proteins in living cells.


Assuntos
Microscopia , Nanotecnologia , Nanotecnologia/métodos , Imagem Individual de Molécula , Espectrometria de Fluorescência/métodos
5.
Methods Appl Fluoresc ; 12(1)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37726007

RESUMO

PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate ofcis/transphotoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule. In this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turning PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.


Assuntos
DNA , Proteínas , DNA/química , Proteínas/química , Transferência Ressonante de Energia de Fluorescência
6.
Commun Biol ; 6(1): 362, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012383

RESUMO

The complex pharmacology of G-protein-coupled receptors (GPCRs) is defined by their multi-state conformational dynamics. Single-molecule Förster Resonance Energy Transfer (smFRET) is well suited to quantify dynamics for individual protein molecules; however, its application to GPCRs is challenging. Therefore, smFRET has been limited to studies of inter-receptor interactions in cellular membranes and receptors in detergent environments. Here, we performed smFRET experiments on functionally active human A2A adenosine receptor (A2AAR) molecules embedded in freely diffusing lipid nanodiscs to study their intramolecular conformational dynamics. We propose a dynamic model of A2AAR activation that involves a slow (>2 ms) exchange between the active-like and inactive-like conformations in both apo and antagonist-bound A2AAR, explaining the receptor's constitutive activity. For the agonist-bound A2AAR, we detected faster (390 ± 80 µs) ligand efficacy-dependent dynamics. Our work establishes a general smFRET platform for GPCR investigations that can potentially be used for drug screening and/or mechanism-of-action studies.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Receptor A2A de Adenosina , Humanos , Receptor A2A de Adenosina/metabolismo , Conformação Molecular , Membrana Celular/metabolismo , Proteínas/metabolismo
7.
ArXiv ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-36866225

RESUMO

PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate of cis/trans photoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule and, in this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turn PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.

8.
Nat Methods ; 20(4): 523-535, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973549

RESUMO

Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas , Transferência Ressonante de Energia de Fluorescência/métodos , Reprodutibilidade dos Testes , Proteínas/química , Conformação Molecular , Laboratórios
9.
Nat Commun ; 13(1): 5402, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104339

RESUMO

Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful ability to infer quantitative kinetic information from smFRET data is, however, complicated by experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a systematic comparison is lacking. Here, we report the results of a blind benchmark study assessing eleven analysis tools used to infer kinetic rate constants from smFRET trajectories. We test them against simulated and experimental data containing the most prominent difficulties encountered in analyzing smFRET experiments: different noise levels, varied model complexity, non-equilibrium dynamics, and kinetic heterogeneity. Our results highlight the current strengths and limitations in inferring kinetic information from smFRET trajectories. In addition, we formulate concrete recommendations and identify key targets for future developments, aimed to advance our understanding of biomolecular dynamics through quantitative experiment-derived models.


Assuntos
Benchmarking , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Cinética , Modelos Teóricos
10.
J Chem Phys ; 157(3): 031501, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35868918

RESUMO

Single-molecule Förster Resonance Energy Transfer (smFRET) experiments are ideally suited to resolve the structural dynamics of biomolecules. A significant challenge to date is capturing and quantifying the exchange between multiple conformational states, mainly when these dynamics occur on the sub-millisecond timescale. Many methods for quantitative analysis are challenged if more than two states are involved, and the appropriate choice of the number of states in the kinetic network is difficult. An additional complication arises if dynamically active molecules coexist with pseudo-static molecules in similar conformational states with undistinguishable Förster Resonance Energy Transfer (FRET) efficiencies. To address these problems, we developed a quantitative integrative analysis framework that combines the information from FRET-lines that relate average fluorescence lifetimes and intensities in two-dimensional burst frequency histograms, fluorescence decays obtained by time-correlated single-photon-counting, photon distribution analysis of the intensities, and fluorescence correlation spectroscopy. Individually, these methodologies provide ambiguous results for the characterization of dynamics in complex kinetic networks. However, the global analysis approach enables accurate determination of the number of states, their kinetic connectivity, the transition rate constants, and species fractions. To challenge the potential of smFRET experiments for studying multi-state kinetic networks, we apply our integrative framework using a set of synthetic data for three-state systems with different kinetic connectivity and exchange rates. Our methodology paves the way toward an integrated analysis of multiparameter smFRET experiments that spans all dimensions of the experimental data. Finally, we propose a workflow for the analysis and show examples that demonstrate the usefulness of this toolkit for dynamic structural biology.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Simulação de Dinâmica Molecular , Transferência Ressonante de Energia de Fluorescência/métodos , Conformação Molecular , Fótons , Espectrometria de Fluorescência
11.
Sci Adv ; 8(26): eabn3299, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35767606

RESUMO

The ParABS system is essential for prokaryotic chromosome segregation. After loading at parS on the genome, ParB (partition protein B) proteins rapidly redistribute to distances of ~15 kilobases from the loading site. It has remained puzzling how this large-distance spreading can occur along DNA loaded with hundreds of proteins. Using in vitro single-molecule fluorescence imaging, we show that ParB from Bacillus subtilis can load onto DNA distantly of parS, as loaded ParB molecules themselves are found to be able to recruit additional ParB proteins from bulk. Notably, this recruitment can occur in cis but also in trans, where, at low tensions within the DNA, newly recruited ParB can bypass roadblocks as it gets loaded to spatially proximal but genomically distant DNA regions. The data are supported by molecular dynamics simulations, which show that cooperative ParB-ParB recruitment can enhance spreading. ParS-independent recruitment explains how ParB can cover substantial genomic distance during chromosome segregation, which is vital for the bacterial cell cycle.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Segregação de Cromossomos , DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Ligação Proteica
12.
J Chem Phys ; 156(14): 141501, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35428384

RESUMO

Conformational dynamics of biomolecules are of fundamental importance for their function. Single-molecule studies of Förster Resonance Energy Transfer (smFRET) between a tethered donor and acceptor dye pair are a powerful tool to investigate the structure and dynamics of labeled molecules. However, capturing and quantifying conformational dynamics in intensity-based smFRET experiments remains challenging when the dynamics occur on the sub-millisecond timescale. The method of multiparameter fluorescence detection addresses this challenge by simultaneously registering fluorescence intensities and lifetimes of the donor and acceptor. Together, two FRET observables, the donor fluorescence lifetime τD and the intensity-based FRET efficiency E, inform on the width of the FRET efficiency distribution as a characteristic fingerprint for conformational dynamics. We present a general framework for analyzing dynamics that relates average fluorescence lifetimes and intensities in two-dimensional burst frequency histograms. We present parametric relations of these observables for interpreting the location of FRET populations in E-τD diagrams, called FRET-lines. To facilitate the analysis of complex exchange equilibria, FRET-lines serve as reference curves for a graphical interpretation of experimental data to (i) identify conformational states, (ii) resolve their dynamic connectivity, (iii) compare different kinetic models, and (iv) infer polymer properties of unfolded or intrinsically disordered proteins. For a simplified graphical analysis of complex kinetic networks, we derive a moment-based representation of the experimental data that decouples the motion of the fluorescence labels from the conformational dynamics of the biomolecule. Importantly, FRET-lines facilitate exploring complex dynamic models via easily computed experimental observables. We provide extensive computational tools to facilitate applying FRET-lines.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Simulação de Dinâmica Molecular , Transferência Ressonante de Energia de Fluorescência/métodos , Conformação Molecular
13.
J Tradit Complement Med ; 11(6): 552-562, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765519

RESUMO

BACKGROUND AND AIM: Andrographis paniculata and Eleutherococcus senticosus preparations and their fixed combination, called Kan Jang®, are traditionally used for relieving symptoms of upper-respiratory tract infections (URTIs). This study aimed to assess the efficacy of early intervention with Kan Jang® on the relief and duration of inflammatory symptoms during the acute phase of the disease. EXPERIMENTAL PROCEDURE: A total of 179 patients with URTI symptoms received six Kan Jang® (daily dose of andrographolides: 60 mg) or placebo capsules a day for five consecutive days in this randomized, quadruple-blinded, placebo-controlled, two-parallel-group phase II study. The primary efficacy outcomes were the decrease in the acute-phase duration and the mean URTI symptoms score (sore throat, runny nose, nasal congestion, hoarseness, cough, headache, and fatigue). RESULTS: Early intervention with Kan Jang® significantly increased the recovery rate and reduced the number of sick leave days by >21% (0.64/day) relative to that observed in the placebo group (2.38 vs. 3.02 days, p = 0.0053). Kan Jang® significantly alleviated all URTI symptoms starting from the second day of treatment. A superior anti-inflammatory effect of Kan Jang® to that of placebo was also observed on the white blood cell count (p = 0.007) and erythrocyte sedimentation rate (p = 0.0258). Treatment with Kan Jang® was tolerated well. CONCLUSION: This study demonstrates that early intervention with Kan Jang® capsules reduces the recovery duration of patients by 21% and significantly relieves the severity of typical URTI symptoms.

14.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389669

RESUMO

Cellular function depends on the correct folding of proteins inside the cell. Heat-shock proteins 70 (Hsp70s), being among the first molecular chaperones binding to nascently translated proteins, aid in protein folding and transport. They undergo large, coordinated intra- and interdomain structural rearrangements mediated by allosteric interactions. Here, we applied a three-color single-molecule Förster resonance energy transfer (FRET) combined with three-color photon distribution analysis to compare the conformational cycle of the Hsp70 chaperones DnaK, Ssc1, and BiP. By capturing three distances simultaneously, we can identify coordinated structural changes during the functional cycle. Besides the known conformations of the Hsp70s with docked domains and open lid and undocked domains with closed lid, we observed additional intermediate conformations and distance broadening, suggesting flexibility of the Hsp70s in adopting the states in a coordinated fashion. Interestingly, the difference of this distance broadening varied between DnaK, Ssc1, and BiP. Study of their conformational cycle in the presence of substrate peptide and nucleotide exchange factors strengthened the observation of additional conformational intermediates, with BiP showing coordinated changes more clearly compared to DnaK and Ssc1. Additionally, DnaK and BiP were found to differ in their selectivity for nucleotide analogs, suggesting variability in the recognition mechanism of their nucleotide-binding domains for the different nucleotides. By using three-color FRET, we overcome the limitations of the usual single-distance approach in single-molecule FRET, allowing us to characterize the conformational space of proteins in higher detail.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas de Choque Térmico HSP70/metabolismo , Organelas/metabolismo , Imagem Individual de Molécula , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Chem Soc Rev ; 50(12): 7062-7107, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33956014

RESUMO

Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.


Assuntos
Fluorescência , Corantes Fluorescentes/química , Nucleosídeos/química , Processos Fotoquímicos
16.
Elife ; 102021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33779550

RESUMO

Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Biologia Molecular/métodos , Imagem Individual de Molécula/métodos , Biologia Molecular/instrumentação , Imagem Individual de Molécula/instrumentação
17.
J Am Chem Soc ; 142(2): 815-825, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31800234

RESUMO

DNA double-strand breaks (DSBs) pose an everyday threat to the conservation of genetic information and therefore life itself. Several pathways have evolved to repair these cytotoxic lesions by rejoining broken ends, among them the nonhomologous end-joining mechanism that utilizes a DNA ligase. Here, we use a custom-designed DNA origami nanostructure as a model system to specifically mimic a DNA DSB, enabling us to study the end-joining of two fluorescently labeled DNA with the T4 DNA ligase on the single-molecule level. The ligation reaction is monitored by Förster resonance energy transfer (FRET) experiments both in solution and on surface-anchored origamis. Due to the modularity of DNA nanotechnology, DNA double strands with different complementary overhang lengths can be studied using the same DNA origami design. We show that the T4 DNA ligase repairs sticky ends more efficiently than blunt ends and that the ligation efficiency is influenced by both DNA sequence and the incubation conditions. Before ligation, dynamic fluctuations of the FRET signal are observed due to transient binding of the sticky overhangs. After ligation, the FRET signal becomes static. Thus, we can directly monitor the ligation reaction through the transition from dynamic to static FRET signals. Finally, we revert the ligation process using a restriction enzyme digestion and religate the resulting blunt ends. The here-presented DNA origami platform is thus suited to study complex multistep reactions occurring over several cycles of enzymatic treatment.


Assuntos
DNA Ligases/química , DNA/química , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Ligação a DNA/química
18.
J Phys Chem B ; 123(32): 6901-6916, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31117611

RESUMO

Single-molecule Förster resonance energy transfer (FRET) is a powerful tool to study conformational dynamics of biomolecules. Using solution-based single-pair FRET by burst analysis, conformational heterogeneities and fluctuations of fluorescently labeled proteins or nucleic acids can be studied by monitoring a single distance at a time. Three-color FRET is sensitive to three distances simultaneously and can thus elucidate complex coordinated motions within single molecules. While three-color FRET has been applied on the single-molecule level before, a detailed quantitative description of the obtained FRET efficiency distributions is still missing. Direct interpretation of three-color FRET data is additionally complicated by an increased shot noise contribution when converting photon counts to FRET efficiencies. However, to address the question of coordinated motion, it is of special interest to extract information about the underlying distance heterogeneity, which is not easily extracted from the FRET efficiency histograms directly. Here, we present three-color photon distribution analysis (3C-PDA), a method to extract distributions of interdye distances from three-color FRET measurements. We present a model for diffusion-based three-color FRET experiments and apply Bayesian inference to extract information about the physically relevant distance heterogeneity in the sample. The approach is verified using simulated data sets and experimentally applied to triple-labeled DNA duplexes. Finally, three-color FRET experiments on the Hsp70 chaperone BiP reveal conformational coordinated changes between individual domains. The possibility to address the co-occurrence of intramolecular distances makes 3C-PDA a powerful method to study the coordination of domain motions within biomolecules undergoing conformational dynamics.


Assuntos
Simulação por Computador , DNA/química , Transferência Ressonante de Energia de Fluorescência , Proteínas de Choque Térmico/química , Fótons , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Teorema de Bayes , DNA/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Humanos , Conformação Molecular , Conformação de Ácido Nucleico
19.
Proc Natl Acad Sci U S A ; 115(48): E11274-E11283, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30429330

RESUMO

Efficient degradation of plant cell walls by selected anaerobic bacteria is performed by large extracellular multienzyme complexes termed cellulosomes. The spatial arrangement within the cellulosome is organized by a protein called scaffoldin, which recruits the cellulolytic subunits through interactions between cohesin modules on the scaffoldin and dockerin modules on the enzymes. Although many structural studies of the individual components of cellulosomal scaffoldins have been performed, the role of interactions between individual cohesin modules and the flexible linker regions between them are still not entirely understood. Here, we report single-molecule measurements using FRET to study the conformational dynamics of a bimodular cohesin segment of the scaffoldin protein CipA of Clostridium thermocellum We observe compacted structures in solution that persist on the timescale of milliseconds. The compacted conformation is found to be in dynamic equilibrium with an extended state that shows distance fluctuations on the microsecond timescale. Shortening of the intercohesin linker does not destabilize the interactions but reduces the rate of contact formation. Upon addition of dockerin-containing enzymes, an extension of the flexible state is observed, but the cohesin-cohesin interactions persist. Using all-atom molecular-dynamics simulations of the system, we further identify possible intercohesin binding modes. Beyond the view of scaffoldin as "beads on a string," we propose that cohesin-cohesin interactions are an important factor for the precise spatial arrangement of the enzymatic subunits in the cellulosome that leads to the high catalytic synergy in these assemblies and should be considered when designing cellulosomes for industrial applications.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Celulossomas/química , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Clostridium thermocellum/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Celulossomas/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Clostridium thermocellum/química , Clostridium thermocellum/genética , Transferência Ressonante de Energia de Fluorescência , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ligação Proteica , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA