Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
J Am Heart Assoc ; : e033557, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39424414

RESUMO

Precision medicine, which among other aspects includes an individual's genomic data in diagnosis and management, has become the standard-of-care for Mendelian cardiovascular disease (CVD). However, early identification and management of asymptomatic patients with potentially lethal and manageable Mendelian CVD through screening, which is the promise of precision health, remains an unsolved challenge. The reduced costs of genomic sequencing have enabled the creation of biobanks containing in-depth genetic and health information, which have facilitated the understanding of genetic variation, penetrance, and expressivity, moving us closer to the genotype-first screening of asymptomatic individuals for Mendelian CVD. This approach could transform health care by diagnostic refinement and facilitating prevention or therapeutic interventions. Yet, potential benefits must be weighed against the potential risks, which include evolving variant pathogenicity assertion or identification of variants with low disease penetrance; costly, stressful, and inappropriate diagnostic evaluations; negative psychological impact; disqualification for employment or of competitive sports; and denial of insurance. Furthermore, the natural history of Mendelian CVD is often unpredictable, making identification of those who will benefit from preventive measures a priority. Currently, there is insufficient evidence that population-based genetic screening for Mendelian CVD can reduce adverse outcomes at a reasonable cost to an extent that outweighs the harms of true-positive and false-positive results. Besides technical, clinical, and financial burdens, ethical and legal aspects pose unprecedented challenges. This review highlights key developments in the field of genotype-first approaches to Mendelian CVD and summarizes challenges with potential solutions that can pave the way for implementing this approach for clinical care.

2.
medRxiv ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39252922

RESUMO

Background: Pathogenic/likely pathogenic (P/LP) desmin (DES) variants cause heterogeneous cardiomyopathy and/or skeletal myopathy phenotypes. Limited data suggest a high incidence of major adverse cardiac events (MACE), including cardiac conduction disease (CCD), sustained ventricular arrhythmias (VA), and heart failure (HF) events (HF hospitalization, LVAD/cardiac transplant, HF-related death), in patients with P/LP DES variants. However, pleiotropic presentation and small cohort sizes have limited clinical phenotype and outcome characterization. Objectives: We aimed to describe the natural history, phenotype spectrum, familial penetrance and outcomes in patients with P/LP DES variants through a systematic review and individual patient data meta-analysis using published reports. Methods: We searched Medline (PubMed) and Embase for studies that evaluated cardiac phenotypes in patients with P/LP DES variants. Cardiomyopathy diagnosis or occurrence of MACE were considered evidence of cardiac involvement/penetrance. Lifetime event-free survival from CCD, sustained VA, HF events, and composite MACE was assessed. Results: Out of 4,212 screened publications, 71 met the inclusion criteria. A total of 230 patients were included (52.6% male, 52.2% probands, median age: 31 years [22.0; 42.8] at first evaluation, median follow-up: 3 years [0; 11.0]). Overall, 124 (53.9%) patients were diagnosed with cardiomyopathy, predominantly dilated cardiomyopathy (14.8%), followed by restrictive cardiomyopathy (13.5%), whereas other forms were less common: arrhythmogenic cardiomyopathy (7.0%), hypertrophic cardiomyopathy (6.1%), arrhythmogenic right ventricular cardiomyopathy (5.2%), and other forms (7.4%). Overall, 132 (57.4%) patients developed MACE, with 96 [41.7%] having CCD, 36 [15.7%] sustained VA, and 43 [18.7%] HF events. Familial penetrance of cardiac disease was 63.6% among relatives with P/LP DES variants. Male sex was associated with increased risk of sustained VA (HR 2.28, p=0.02) and HF events (HR 2.45, p=0.008). Conclusions: DES cardiomyopathy exhibits heterogeneous phenotypes and distinct natural history, characterized by high familial penetrance and substantial MACE burden. Male patients face higher risk of sustained VA events.

4.
Nat Commun ; 15(1): 4670, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821983

RESUMO

The major ampullate Spidroin 1 (MaSp1) is the main protein of the dragline spider silk. The C-terminal (CT) domain of MaSp1 is crucial for the self-assembly into fibers but the details of how it contributes to the fiber formation remain unsolved. Here we exploit the fact that the CT domain can form silk-like fibers by itself to gain knowledge about this transition. Structural investigations of fibers from recombinantly produced CT domain from E. australis MaSp1 reveal an α-helix to ß-sheet transition upon fiber formation and highlight the helix No4 segment as most likely to initiate the structural conversion. This prediction is corroborated by the finding that a peptide corresponding to helix No4 has the ability of pH-induced conversion into ß-sheets and self-assembly into nanofibrils. Our results provide structural information about the CT domain in fiber form and clues about its role in triggering the structural conversion of spidroins during fiber assembly.


Assuntos
Fibroínas , Aranhas , Fibroínas/química , Fibroínas/metabolismo , Animais , Aranhas/metabolismo , Seda/química , Seda/metabolismo , Domínios Proteicos , Sequência de Aminoácidos , Conformação Proteica em Folha beta , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Concentração de Íons de Hidrogênio , Conformação Proteica em alfa-Hélice , Estrutura Secundária de Proteína
5.
J Clin Med ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38673656

RESUMO

Ventricular fibrillation (VF) is a common cause of sudden cardiac death in patients with channelopathies, particularly in the young population. Although pharmacological treatment, cardiac sympathectomy, and implantable cardioverter defibrillators (ICD) have been the mainstay in the management of VF in patients with channelopathies, they are associated with significant adverse effects and complications, leading to poor quality of life. Given these drawbacks, catheter ablation has been proposed as a therapeutic option for patients with channelopathies. Advances in imaging techniques and modern mapping technologies have enabled increased precision in identifying arrhythmia triggers and substrate modification. This has aided our understanding of the underlying pathophysiology of ventricular arrhythmias in channelopathies, highlighting the roles of the Purkinje network and the epicardial right ventricular outflow tract in arrhythmogenesis. This review explores the role of catheter ablation in managing the most common channelopathies (Brugada syndrome, congenital long QT syndrome, short QT syndrome, and catecholaminergic polymorphic ventricular tachycardia). While the initial results for ablation in Brugada syndrome are promising, the long-term efficacy and durability of ablation in different channelopathies require further investigation. Given the genetic and phenotypic heterogeneity of channelopathies, future studies are needed to show whether catheter ablation in patients with channelopathies is associated with a reduction in VF, and psychological distress stemming from recurrent ICD shocks, particularly relative to other available therapeutic options (e.g., quinidine in high-risk Brugada patients).

7.
Circ Arrhythm Electrophysiol ; 17(2): e012356, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38264885

RESUMO

Genetic testing has become standard of care for patients with long QT syndrome (LQTS), providing diagnostic, prognostic, and therapeutic information for both probands and their family members. However, up to a quarter of patients with LQTS do not have identifiable Mendelian pathogenic variants in the currently known LQTS-associated genes. This absence of genetic confirmation, intriguingly, does not lessen the severity of LQTS, with the prognosis in these gene-elusive patients with unequivocal LQTS mirroring genotype-positive patients in the limited data available. Such a conundrum instigates an exploration into the causes of corrected QT interval (QTc) prolongation in these cases, unveiling a broad spectrum of potential scenarios and mechanisms. These include multiple environmental influences on QTc prolongation, exercise-induced repolarization abnormalities, and the profound implications of the constantly evolving nature of genetic testing and variant interpretation. In addition, the rapid advances in genetics have the potential to uncover new causal genes, and polygenic risk factors may aid in the diagnosis of high-risk patients. Navigating this multifaceted landscape requires a systematic approach and expert knowledge, integrating the dynamic nature of genetics and patient-specific influences for accurate diagnosis, management, and counseling of patients. The role of a subspecialized expert cardiogenetic clinic is paramount in evaluation to navigate this complexity. Amid these intricate aspects, this review outlines potential causes of gene-elusive LQTS. It also provides an outline for the evaluation of patients with negative and inconclusive genetic test results and underscores the need for ongoing adaptation and reassessment in our understanding of LQTS, as the complexities of gene-elusive LQTS are increasingly deciphered.


Assuntos
Eletrocardiografia , Síndrome do QT Longo , Humanos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Síndrome do QT Longo/terapia , Genótipo , Fatores de Risco , Testes Genéticos
8.
Phys Chem Chem Phys ; 26(2): 1166-1181, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38099625

RESUMO

Analysis of the amide I band of proteins is probably the most wide-spread application of bioanalytical infrared spectroscopy. Although highly desirable for a more detailed structural interpretation, a quantitative description of this absorption band is still difficult. This work optimized several electrostatic models with the aim to reproduce the effect of the protein environment on the intrinsic wavenumber of a local amide I oscillator. We considered the main secondary structures - α-helices, parallel and antiparallel ß-sheets - with a maximum of 21 amide groups. The models were based on the electric potential and/or the electric field component along the CO bond at up to four atoms in an amide group. They were bench-marked by comparison to Hessian matrices reconstructed from density functional theory calculations at the BPW91, 6-31G** level. The performance of the electrostatic models depended on the charge set used to calculate the electric field and potential. Gromos and DSSP charge sets, used in common force fields, were not optimal for the better performing models. A good compromise between performance and the stability of model parameters was achieved by a model that considered the electric field at the positions of the oxygen, nitrogen, and hydrogen atoms of the considered amide group. The model describes also some aspects of the local conformation effect and performs similar on its own as in combination with an explicit implementation of the local conformation effect. It is better than a combination of a local hydrogen bonding model with the local conformation effect. Even though the short-range hydrogen bonding model performs worse, it captures important aspects of the local wavenumber sensitivity to the molecular surroundings. We improved also the description of the coupling between local amide I oscillators by developing an electrostatic model for the dependency of the dipole derivative magnitude on the protein environment.


Assuntos
Amidas , Proteínas , Amidas/química , Eletricidade Estática , Modelos Moleculares , Proteínas/química , Espectrofotometria Infravermelho/métodos
10.
Commun Chem ; 6(1): 163, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537303

RESUMO

Interactions between molecules are fundamental in biology. They occur also between amyloidogenic peptides or proteins that are associated with different amyloid diseases, which makes it important to study the mutual influence of two polypeptides on each other's properties in mixed samples. However, addressing this research question with imaging techniques faces the challenge to distinguish different polypeptides without adding artificial probes for detection. Here, we show that nanoscale infrared spectroscopy in combination with 13C, 15N-labeling solves this problem. We studied aggregated amyloid-ß peptide (Aß) and its interaction with an inhibitory peptide (NCAM1-PrP) using scattering-type scanning near-field optical microscopy. Although having similar secondary structure, labeled and unlabeled peptides could be distinguished by comparing optical phase images taken at wavenumbers characteristic for either the labeled or the unlabeled peptide. NCAM1-PrP seems to be able to associate with or to dissolve existing Aß fibrils because pure Aß fibrils were not detected after mixing.

11.
ACS Chem Neurosci ; 14(15): 2618-2633, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37487115

RESUMO

Uranium (U) is naturally present in ambient air, water, and soil, and depleted uranium (DU) is released into the environment via industrial and military activities. While the radiological damage from U is rather well understood, less is known about the chemical damage mechanisms, which dominate in DU. Heavy metal exposure is associated with numerous health conditions, including Alzheimer's disease (AD), the most prevalent age-related cause of dementia. The pathological hallmark of AD is the deposition of amyloid plaques, consisting mainly of amyloid-ß (Aß) peptides aggregated into amyloid fibrils in the brain. However, the toxic species in AD are likely oligomeric Aß aggregates. Exposure to heavy metals such as Cd, Hg, Mn, and Pb is known to increase Aß production, and these metals bind to Aß peptides and modulate their aggregation. The possible effects of U in AD pathology have been sparsely studied. Here, we use biophysical techniques to study in vitro interactions between Aß peptides and uranyl ions, UO22+, of DU. We show for the first time that uranyl ions bind to Aß peptides with affinities in the micromolar range, induce structural changes in Aß monomers and oligomers, and inhibit Aß fibrillization. This suggests a possible link between AD and U exposure, which could be further explored by cell, animal, and epidemiological studies. General toxic mechanisms of uranyl ions could be modulation of protein folding, misfolding, and aggregation.


Assuntos
Doença de Alzheimer , Urânio , Animais , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Íons/química , Amiloide
15.
Sci Rep ; 13(1): 3341, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849796

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD brains display deposits of insoluble amyloid plaques consisting mainly of aggregated amyloid-ß (Aß) peptides, and Aß oligomers are likely a toxic species in AD pathology. AD patients display altered metal homeostasis, and AD plaques show elevated concentrations of metals such as Cu, Fe, and Zn. Yet, the metal chemistry in AD pathology remains unclear. Ni(II) ions are known to interact with Aß peptides, but the nature and effects of such interactions are unknown. Here, we use numerous biophysical methods-mainly spectroscopy and imaging techniques-to characterize Aß/Ni(II) interactions in vitro, for different Aß variants: Aß(1-40), Aß(1-40)(H6A, H13A, H14A), Aß(4-40), and Aß(1-42). We show for the first time that Ni(II) ions display specific binding to the N-terminal segment of full-length Aß monomers. Equimolar amounts of Ni(II) ions retard Aß aggregation and direct it towards non-structured aggregates. The His6, His13, and His14 residues are implicated as binding ligands, and the Ni(II)·Aß binding affinity is in the low µM range. The redox-active Ni(II) ions induce formation of dityrosine cross-links via redox chemistry, thereby creating covalent Aß dimers. In aqueous buffer Ni(II) ions promote formation of beta sheet structure in Aß monomers, while in a membrane-mimicking environment (SDS micelles) coil-coil helix interactions appear to be induced. For SDS-stabilized Aß oligomers, Ni(II) ions direct the oligomers towards larger sizes and more diverse (heterogeneous) populations. All of these structural rearrangements may be relevant for the Aß aggregation processes that are involved in AD brain pathology.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Biofísica , Encéfalo , Íons , Placa Amiloide , Níquel/química
16.
J Am Heart Assoc ; 12(3): e8023, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36718879

RESUMO

Background Heart failure (HF) has been increasing in prevalence, and a need exists for biomarkers with improved predictive and prognostic ability. GDF-15 (growth differentiation factor-15) is a novel biomarker associated with HF mortality, but no serial studies of GDF-15 have been conducted. This study aimed to investigate the association between GDF-15 levels over time and the occurrence of ventricular arrhythmias, HF hospitalizations, and all-cause mortality. Methods and Results We used a retrospective case-control design to analyze 148 patients with ischemic and nonischemic cardiomyopathies and primary prevention implantable cardioverter-defibrillator (ICD) from the PROSe-ICD (Prospective Observational Study of the ICD in Sudden Cardiac Death Prevention) cohort. Patients had blood drawn every 6 months and after each appropriate ICD therapy and were followed for a median follow-up of 4.6 years, between 2005 to 2019. We compared serum GDF-15 levels within ±90 days of an event among those with a ventricular tachycardia/fibrillation event requiring ICD therapies and those hospitalized for decompensated HF. A comparator/control group comprised patients with GDF-15 levels available during 2-year follow-up periods without events. Median follow-up was 4.6 years in the 148 patients studied (mean age 58±12, 27% women). The HF cohort had greater median GDF-15 values within 90 days (1797 pg/mL) and 30 days (2039 pg/mL) compared with the control group (1062 pg/mL, both P<0.0001). No difference was found between the ventricular tachycardia/fibrillation subgroup within 90 days (1173 pg/mL, P=0.60) or 30 days (1173 pg/mL, P=0.78) and the control group. GDF-15 was also significantly predictive of mortality (hazard ratio, 3.17 [95% CI, 2.33-4.30]). Conclusions GDF-15 levels are associated with HF hospitalization and mortality but not ventricular arrhythmic events.


Assuntos
Cardiomiopatias , Fator 15 de Diferenciação de Crescimento , Insuficiência Cardíaca , Taquicardia Ventricular , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/terapia , Arritmias Cardíacas/complicações , Biomarcadores , Cardiomiopatias/terapia , Cardiomiopatias/complicações , Morte Súbita Cardíaca/epidemiologia , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Desfibriladores Implantáveis , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/complicações , Estudos Retrospectivos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/terapia , Taquicardia Ventricular/complicações , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/terapia , Fibrilação Ventricular/complicações
17.
Adv Funct Mater ; 32(23): 2200986, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-36505976

RESUMO

Spider silk is the toughest fiber found in nature, and bulk production of artificial spider silk that matches its mechanical properties remains elusive. Development of miniature spider silk proteins (mini-spidroins) has made large-scale fiber production economically feasible, but the fibers' mechanical properties are inferior to native silk. The spider silk fiber's tensile strength is conferred by poly-alanine stretches that are zipped together by tight side chain packing in ß-sheet crystals. Spidroins are secreted so they must be void of long stretches of hydrophobic residues, since such segments get inserted into the endoplasmic reticulum membrane. At the same time, hydrophobic residues have high ß-strand propensity and can mediate tight inter-ß-sheet interactions, features that are attractive for generation of strong artificial silks. Protein production in prokaryotes can circumvent biological laws that spiders, being eukaryotic organisms, must obey, and the authors thus design mini-spidroins that are predicted to more avidly form stronger ß-sheets than the wildtype protein. Biomimetic spinning of the engineered mini-spidroins indeed results in fibers with increased tensile strength and two fiber types display toughness equal to native dragline silks. Bioreactor expression and purification result in a protein yield of ≈9 g L-1 which is in line with requirements for economically feasible bulk scale production.

19.
J Innov Card Rhythm Manag ; 13(8): 5104-5110, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36072446

RESUMO

Radiographic identification of the cardiac implantable electronic device (CIED) manufacturer facilitates urgent interrogation of an unknown CIED. In the past, we relied on visualizing a manufacturer-specific X-ray logo. Recently, a free smartphone application ("Pacemaker-ID") was made available. A photograph of a chest X-ray was subjected to an artificial intelligence (AI) algorithm that uses manufacturer characteristics (canister shape, battery design) for identification. We sought to externally validate the accuracy of this smartphone application as a point-of-care (POC) diagnostic tool, compare on-axis to off-axis photo accuracy, and compare it to X-ray logo visualization for manufacturer identification. We reviewed operative reports and chest X-rays in 156 pacemaker and 144 defibrillator patients to visualize X-ray logos and to test the application with 3 standard (on-axis) and 4 non-standard (off-axis) photos (20° cranial; caudal, leftward, and rightward). Contingency tables were created and chi-squared analyses (P < .05) were completed for manufacturer and CIED type. The accuracy of the application was 91.7% and 86.3% with single and serial application(s), respectively; 80.7% with off-axis photos; and helpful for all manufacturers (range, 85.4%-96.6%). Overall, the application proved superior to the X-ray logo, visualized in 56% overall (P < .0001) but varied significantly by manufacturer (range, 7.7%-94.8%; P < .00001). The accuracy of the Pacemaker-ID application is consistent with reports from its creators and superior to X-ray logo visualization. The accuracy of the application as a POC tool can be enhanced and maintained with further AI training using recent CIED models. Some manufacturers can enhance their X-ray logos by improving placement and design.

20.
Nat Commun ; 13(1): 4695, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970823

RESUMO

Recombinant spider silk proteins (spidroins) have multiple potential applications in development of novel biomaterials, but their multimodal and aggregation-prone nature have complicated production and straightforward applications. Here, we report that recombinant miniature spidroins, and importantly also the N-terminal domain (NT) on its own, rapidly form self-supporting and transparent hydrogels at 37 °C. The gelation is caused by NT α-helix to ß-sheet conversion and formation of amyloid-like fibrils, and fusion proteins composed of NT and green fluorescent protein or purine nucleoside phosphorylase form hydrogels with intact functions of the fusion moieties. Our findings demonstrate that recombinant NT and fusion proteins give high expression yields and bestow attractive properties to hydrogels, e.g., transparency, cross-linker free gelation and straightforward immobilization of active proteins at high density.


Assuntos
Fibroínas , Aranhas , Animais , Fibroínas/química , Hidrogéis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Seda/química , Aranhas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA